Abstract
A purification scheme has been devised for two ethoxyquin-inducible Alpha-class glutathione S-transferases (GSTs) which possess at least 25-fold greater activity towards aflatoxin B1 (AFB1)-8,9-epoxide than that exhibited by the GSTs (i.e. F, L, B and AA) that have been described previously. These two enzymes are both heterodimers and both contain a subunit of Mr 25,800. This subunit has been isolated from both of the GST isoenzymes and, after cleavage with CNBr, it has been subjected to automated amino acid sequencing. The primary structure of the Mr 25,800 subunit revealed that it forms part of a subfamily of Alpha-class GSTs which possess closest identity (about 92%) with the Yc subunit of apparent Mr 27,500, which is encoded by the recombinant cDNA clone pGTB42 [Telakowski-Hopkins, Rodkey, Bennett, Lu & Pickett (1985) J. Biol. Chem. 260, 5820-5825]. As these two GSTs possess less than 70% sequence identity with the Ya1 and Ya2 subunits, both of Mr 25,500, the constitutively expressed Yc subunit of Mr 27,500 has been renamed Yc1 and the ethoxyquin-inducible GST of Mr 25,800 has been designated Yc2. Using this nomenclature, the two GSTs with high activity for AFB1-8,9-epoxide are Ya1Yc2 and Yc1Yc2. Although evidence suggests that induction of Yc2 is responsible for the high detoxification capacity of livers from ethoxyquin-treated rats for AFB1-8,9-epoxide, resistance towards AFB1 may be multifactorial in this instance as dietary ethoxyquin also induces the Ya1, Ya2 and Yc1 subunits about 2.2-, 10.9- and 2.7-fold respectively. Besides the induction of GST by ethoxyquin, activity towards AFB1-8,9-epoxide is also elevated in the livers of neonatal rats and in livers that contain preneoplastic nodules. Western blotting experiments show that Yc2 is not present in hepatic cytosol from adult rats fed on normal diets but is expressed in neonatal rat livers and in the livers of adult rats that contain preneoplastic nodules that have arisen as a consequence of consuming diets contaminated with AFB1.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bass N. M., Kirsch R. E., Tuff S. A., Marks I., Saunders S. J. Ligandin heterogeneity : evidence that the two non-identical subunits are the monomers of two distinct proteins. Biochim Biophys Acta. 1977 May 27;492(1):163–175. doi: 10.1016/0005-2795(77)90223-9. [DOI] [PubMed] [Google Scholar]
- Beale D., Ketterer B., Carne T., Meyer D., Taylor J. B. Evidence that the Ya and Yc subunits of glutathione transferase B (ligandin) are the products of separate genes. Eur J Biochem. 1982 Sep 1;126(3):459–463. doi: 10.1111/j.1432-1033.1982.tb06802.x. [DOI] [PubMed] [Google Scholar]
- Benson A. M., Talalay P., Keen J. H., Jakoby W. B. Relationship between the soluble glutathione-dependent delta 5-3-ketosteroid isomerase and the glutathione S-transferases of the liver. Proc Natl Acad Sci U S A. 1977 Jan;74(1):158–162. doi: 10.1073/pnas.74.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentejac M., Bugaut M., Delachambre M. C., Lecerf J. Utilization of high-density lipoprotein sphingomyelin by the developing and mature brain in the rat. J Neurochem. 1989 May;52(5):1495–1500. doi: 10.1111/j.1471-4159.1989.tb09199.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
- Böck G., Huber L. A., Wick G., Traill K. N. Use of a FACS III for fluorescence depolarization with DPH. J Histochem Cytochem. 1989 Nov;37(11):1653–1658. doi: 10.1177/37.11.2809175. [DOI] [PubMed] [Google Scholar]
- Cabral J. R., Neal G. E. The inhibitory effects of ethoxyquin on the carcinogenic action of aflatoxin B1 in rats. Cancer Lett. 1983 Jun;19(2):125–132. doi: 10.1016/0304-3835(83)90146-5. [DOI] [PubMed] [Google Scholar]
- Coles B., Meyer D. J., Ketterer B., Stanton C. A., Garner R. C. Studies on the detoxication of microsomally-activated aflatoxin B1 by glutathione and glutathione transferases in vitro. Carcinogenesis. 1985 May;6(5):693–697. doi: 10.1093/carcin/6.5.693. [DOI] [PubMed] [Google Scholar]
- Cuthbert J. A., Lipsky P. E. Lipoproteins may provide fatty acids necessary for human lymphocyte proliferation by both low density lipoprotein receptor-dependent and -independent mechanisms. J Biol Chem. 1989 Aug 15;264(23):13468–13474. [PubMed] [Google Scholar]
- Cuthbert J. A., Lipsky P. E. Promotion of human T lymphocyte activation and proliferation by fatty acids in low density and high density lipoproteins. J Biol Chem. 1986 Mar 15;261(8):3620–3627. [PubMed] [Google Scholar]
- Degen G. H., Neumann H. G. The major metabolite of aflatoxin B1 in the rat is a glutathione conjugate. Chem Biol Interact. 1978 Sep;22(2-3):239–255. doi: 10.1016/0009-2797(78)90129-1. [DOI] [PubMed] [Google Scholar]
- Fairchild C. R., Ivy S. P., Rushmore T., Lee G., Koo P., Goldsmith M. E., Myers C. E., Farber E., Cowan K. H. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7701–7705. doi: 10.1073/pnas.84.21.7701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber E. Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochim Biophys Acta. 1984;738(4):171–180. doi: 10.1016/0304-419x(83)90002-1. [DOI] [PubMed] [Google Scholar]
- Farber E. The biochemistry of preneoplastic liver: a common metabolic pattern in hepatocyte nodules. Can J Biochem Cell Biol. 1984 Jun;62(6):486–494. doi: 10.1139/o84-066. [DOI] [PubMed] [Google Scholar]
- Favre G., Blancy E., Tournier J. F., Soula G. Proliferative effect of high density lipoprotein (HDL) and HDL fractions (HDL1,2, HDL3) on virus transformed lymphoblastoid cells. Biochim Biophys Acta. 1989 Sep 19;1013(2):118–124. doi: 10.1016/0167-4889(89)90039-6. [DOI] [PubMed] [Google Scholar]
- Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
- Goppelt M., Köhler L., Resch K. Functional role of lipid metabolism in activated T-lymphocytes. Biochim Biophys Acta. 1985 Mar 6;833(3):463–472. doi: 10.1016/0005-2760(85)90104-3. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Cohen D. C., Massoglia S. L. Stimulation of the proliferation of the Madin-Darby canine kidney (MDCK) epithelial cell line by high-density lipoproteins and their induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. J Cell Physiol. 1983 Oct;117(1):76–90. doi: 10.1002/jcp.1041170112. [DOI] [PubMed] [Google Scholar]
- Grellier P., Rigomier D., Clavey V., Fruchart J. C., Schrevel J. Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. J Cell Biol. 1991 Jan;112(2):267–277. doi: 10.1083/jcb.112.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurtoo H. L., Koser P. L., Bansal S. K., Fox H. W., Sharma S. D., Mulhern A. I., Pavelic Z. P. Inhibition of aflatoxin B1-hepatocarcinogenesis in rats by beta-naphthoflavone. Carcinogenesis. 1985 May;6(5):675–678. doi: 10.1093/carcin/6.5.675. [DOI] [PubMed] [Google Scholar]
- Gwynne J. T., Mahaffee D. D. Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl ester. J Biol Chem. 1989 May 15;264(14):8141–8150. [PubMed] [Google Scholar]
- Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hayes J. D., Clarkson G. H. Purification and characterization of three forms of glutathione S-transferase A. A comparative study of the major YaYa-, YbYb- and YcYc-containing glutathione S-transferases. Biochem J. 1982 Dec 1;207(3):459–470. doi: 10.1042/bj2070459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Kerr L. A., Cronshaw A. D. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. doi: 10.1042/bj2640437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Kerr L. A., Harrison D. J., Cronshaw A. D., Ross A. G., Neal G. E. Preferential over-expression of the class alpha rat Ya2 glutathione S-transferase subunit in livers bearing aflatoxin-induced pre-neoplastic nodules. Comparison of the primary structures of Ya1 and Ya2 with cloned class alpha glutathione S-transferase cDNA sequences. Biochem J. 1990 Jun 1;268(2):295–302. doi: 10.1042/bj2680295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Mantle T. J. Anomalous electrophoretic behaviour of the glutathione S-transferase Ya and Yk subunits isolated from man and rodents. A potential pitfall for nomenclature. Biochem J. 1986 Aug 1;237(3):731–740. doi: 10.1042/bj2370731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Mantle T. J. Inhibition of hepatic and extrahepatic glutathione S-transferases by primary and secondary bile acids. Biochem J. 1986 Jan 15;233(2):407–415. doi: 10.1042/bj2330407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Mantle T. J. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. doi: 10.1042/bj2330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D. Purification and physical characterization of glutathione S-transferase K. Differential use of S-hexylglutathione and glutathione affinity matrices to isolate a novel glutathione S-transferase from rat liver. Biochem J. 1986 Feb 1;233(3):789–798. doi: 10.1042/bj2330789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D. Rat liver glutathione S-transferases. A study of the structure of the basic YbYb-containing enzymes. Biochem J. 1983 Sep 1;213(3):625–633. doi: 10.1042/bj2130625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Wolf C. R. Molecular mechanisms of drug resistance. Biochem J. 1990 Dec 1;272(2):281–295. doi: 10.1042/bj2720281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoesch R. M., Boyer T. D. Localization of a portion of the active site of two rat liver glutathione S-transferases using a photoaffinity label. J Biol Chem. 1989 Oct 25;264(30):17712–17717. [PubMed] [Google Scholar]
- Homayoun P., Bentejac M., Lecerf J., Bourre J. M. Uptake and utilization of double-labeled high-density lipoprotein sphingomyelin in isolated brain capillaries of adult rats. J Neurochem. 1989 Oct;53(4):1031–1035. doi: 10.1111/j.1471-4159.1989.tb07391.x. [DOI] [PubMed] [Google Scholar]
- Howie A. F., Forrester L. M., Glancey M. J., Schlager J. J., Powis G., Beckett G. J., Hayes J. D., Wolf C. R. Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis. 1990 Mar;11(3):451–458. doi: 10.1093/carcin/11.3.451. [DOI] [PubMed] [Google Scholar]
- Huber L. A., Xu Q. B., Jürgens G., Böck G., Bühler E., Gey K. F., Schönitzer D., Traill K. N., Wick G. Correlation of lymphocyte lipid composition membrane microviscosity and mitogen response in the aged. Eur J Immunol. 1991 Nov;21(11):2761–2765. doi: 10.1002/eji.1830211117. [DOI] [PubMed] [Google Scholar]
- Jhee E. C., Ho L. L., Lotlikar P. D. Effect of butylated hydroxyanisole pretreatment on in vitro hepatic aflatoxin B1-DNA binding and aflatoxin B1-glutathione conjugation in rats. Cancer Res. 1988 May 15;48(10):2688–2692. [PubMed] [Google Scholar]
- Jürgens G., Xu Q. B., Huber L. A., Böck G., Howanietz H., Wick G., Traill K. N. Promotion of lymphocyte growth by high density lipoproteins (HDL). Physiological significance of the HDL binding site. J Biol Chem. 1989 May 25;264(15):8549–8556. [PubMed] [Google Scholar]
- Kensler T. W., Egner P. A., Davidson N. E., Roebuck B. D., Pikul A., Groopman J. D. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res. 1986 Aug;46(8):3924–3931. [PubMed] [Google Scholar]
- Kensler T. W., Egner P. A., Dolan P. M., Groopman J. D., Roebuck B. D. Mechanism of protection against aflatoxin tumorigenicity in rats fed 5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3-thione (oltipraz) and related 1,2-dithiol-3-thiones and 1,2-dithiol-3-ones. Cancer Res. 1987 Aug 15;47(16):4271–4277. [PubMed] [Google Scholar]
- Krishnamachari K. A., Bhat R. V., Nagarajan V., Tilak T. B. Hepatitis due to aflatoxicosis. An outbreak in Western India. Lancet. 1975 May 10;1(7915):1061–1063. doi: 10.1016/s0140-6736(75)91829-2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leikin A. I., Mihovilovic M., Scanu A. M. High density lipoproteins influence cholesterol homeostasis in cultured virus-transformed human lymphoblastoid cells. Dependence on the lipoprotein concentration in the medium. J Biol Chem. 1982 Dec 10;257(23):14280–14287. [PubMed] [Google Scholar]
- Lotlikar P. D., Raj H. G., Bohm L. S., Ho L. L., Jhee E. C., Tsuji K., Gopalan P. A mechanism of inhibition of aflatoxin B1-DNA binding in the liver by phenobarbital pretreatment of rats. Cancer Res. 1989 Feb 15;49(4):951–957. [PubMed] [Google Scholar]
- Mandel H. G., Manson M. M., Judah D. J., Simpson J. L., Green J. A., Forrester L. M., Wolf C. R., Neal G. E. Metabolic basis for the protective effect of the antioxidant ethoxyquin on aflatoxin B1 hepatocarcinogenesis in the rat. Cancer Res. 1987 Oct 1;47(19):5218–5223. [PubMed] [Google Scholar]
- McCusker F. M., Boyce S. J., Mantle T. J. The development of glutathione S-transferase subunits in rat liver. Sensitive detection of the major subunit forms of rat glutathione S-transferase by using an e.l.i.s.a. method. Biochem J. 1989 Sep 1;262(2):463–467. doi: 10.1042/bj2620463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLellan L. I., Hayes J. D. Differential induction of class alpha glutathione S-transferases in mouse liver by the anticarcinogenic antioxidant butylated hydroxyanisole. Purification and characterization of glutathione S-transferase Ya1Ya1. Biochem J. 1989 Oct 15;263(2):393–402. doi: 10.1042/bj2630393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLellan L. I., Kerr L. A., Cronshaw A. D., Hayes J. D. Regulation of mouse glutathione S-transferases by chemoprotectors. Molecular evidence for the existence of three distinct alpha-class glutathione S-transferase subunits, Ya1, Ya2, and Ya3, in mouse liver. Biochem J. 1991 Jun 1;276(Pt 2):461–469. doi: 10.1042/bj2760461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss E. J., Judah D. J., Przybylski M., Neal G. E. Some mass-spectral and n.m.r. analytical studies of a glutathione conjugate of aflatoxin B1. Biochem J. 1983 Jan 15;210(1):227–233. doi: 10.1042/bj2100227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neal G. E., Nielsch U., Judah D. J., Hulbert P. B. Conjugation of model substrates or microsomally-activated aflatoxin B1 with reduced glutathione, catalysed by cytosolic glutathione-S-transferases in livers of rats, mice and guinea pigs. Biochem Pharmacol. 1987 Dec 15;36(24):4269–4276. doi: 10.1016/0006-2952(87)90669-1. [DOI] [PubMed] [Google Scholar]
- Newberne P. M., Butler W. H. Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. Cancer Res. 1969 Jan;29(1):236–250. [PubMed] [Google Scholar]
- Oram J. F., Brinton E. A., Bierman E. L. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J Clin Invest. 1983 Nov;72(5):1611–1621. doi: 10.1172/JCI111120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostlund Farrants A. K., Meyer D. J., Coles B., Southan C., Aitken A., Johnson P. J., Ketterer B. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem J. 1987 Jul 15;245(2):423–428. doi: 10.1042/bj2450423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
- Peers F. G., Gilman G. A., Linsell C. A. Dietary aflatoxins and human liver cancer. A study in Swaziland. Int J Cancer. 1976 Feb 15;17(2):167–176. doi: 10.1002/ijc.2910170204. [DOI] [PubMed] [Google Scholar]
- Pickett C. B., Telakowski-Hopkins C. A., Ding G. J., Argenbright L., Lu A. Y. Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem. 1984 Apr 25;259(8):5182–5188. [PubMed] [Google Scholar]
- Pitas R. E., Innerarity T. L., Weinstein J. N., Mahley R. W. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. doi: 10.1161/01.atv.1.3.177. [DOI] [PubMed] [Google Scholar]
- Prasanna H. R., Lu M. H., Beland F. A., Hart R. W. Inhibition of aflatoxin B1 binding to hepatic DNA by dehydroepiandrosterone in vivo. Carcinogenesis. 1989 Dec;10(12):2197–2200. doi: 10.1093/carcin/10.12.2197. [DOI] [PubMed] [Google Scholar]
- Quinn B. A., Crane T. L., Kocal T. E., Best S. J., Cameron R. G., Rushmore T. H., Farber E., Hayes M. A. Protective activity of different hepatic cytosolic glutathione S-transferases against DNA-binding metabolites of aflatoxin B1. Toxicol Appl Pharmacol. 1990 Sep 15;105(3):351–363. doi: 10.1016/0041-008x(90)90139-l. [DOI] [PubMed] [Google Scholar]
- Rajan V. P., Menon K. M. Cholesterol flux between high density lipoproteins and cultured rat luteal cells. Endocrinology. 1989 Apr;124(4):1857–1862. doi: 10.1210/endo-124-4-1857. [DOI] [PubMed] [Google Scholar]
- Ramsdell H. S., Eaton D. L. Mouse liver glutathione S-transferase isoenzyme activity toward aflatoxin B1-8,9-epoxide and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Toxicol Appl Pharmacol. 1990 Sep 1;105(2):216–225. doi: 10.1016/0041-008x(90)90183-u. [DOI] [PubMed] [Google Scholar]
- Reichl D., Myant N. B., Brown M. S., Goldstein J. L. Biologically active low density lipoprotein in human peripheral lymph. J Clin Invest. 1978 Jan;61(1):64–71. doi: 10.1172/JCI108926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinninger F., Greten H. High-density lipoprotein particle uptake and selective uptake of high-density lipoprotein-associated cholesteryl esters by J774 macrophages. Biochim Biophys Acta. 1990 Apr 17;1043(3):318–326. doi: 10.1016/0005-2760(90)90033-t. [DOI] [PubMed] [Google Scholar]
- Rothkopf G. S., Telakowski-Hopkins C. A., Stotish R. L., Pickett C. B. Multiplicity of glutathione S-transferase genes in the rat and association with a type 2 Alu repetitive element. Biochemistry. 1986 Mar 11;25(5):993–1002. doi: 10.1021/bi00353a007. [DOI] [PubMed] [Google Scholar]
- Rushmore T. H., King R. G., Paulson K. E., Pickett C. B. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci U S A. 1990 May;87(10):3826–3830. doi: 10.1073/pnas.87.10.3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
- Schmitz G., Robenek H., Lohmann U., Assmann G. Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J. 1985 Mar;4(3):613–622. doi: 10.1002/j.1460-2075.1985.tb03674.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scobey M. W., Johnson F. L., Rudel L. L. Delivery of high-density lipoprotein free and esterified cholesterol to bile by the perfused monkey liver. Am J Physiol. 1989 Oct;257(4 Pt 1):G644–G652. doi: 10.1152/ajpgi.1989.257.4.G644. [DOI] [PubMed] [Google Scholar]
- Scott T. R., Kirsch R. E. The isolation of a fetal rat liver glutathione S-transferase isoenzyme with high glutathione peroxidase activity. Biochim Biophys Acta. 1987 Dec 7;926(3):264–269. doi: 10.1016/0304-4165(87)90212-1. [DOI] [PubMed] [Google Scholar]
- Sheehan D., Mantle T. J. Evidence for two forms of ligandin (YaYa dimers of glutathione S-transferase) in rat liver and kidney. Biochem J. 1984 Mar 15;218(3):893–897. doi: 10.1042/bj2180893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada T., Guengerich F. P. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A. 1989 Jan;86(2):462–465. doi: 10.1073/pnas.86.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloop C. H., Dory L., Roheim P. S. Interstitial fluid lipoproteins. J Lipid Res. 1987 Mar;28(3):225–237. [PubMed] [Google Scholar]
- Sparrow C. P., Pittman R. C. Cholesterol esters selectively taken up from high-density lipoproteins are hydrolyzed extralysosomally. Biochim Biophys Acta. 1990 Apr 2;1043(2):203–210. doi: 10.1016/0005-2760(90)90297-b. [DOI] [PubMed] [Google Scholar]
- Spector A. A. Structure and lipid binding properties of serum albumin. Methods Enzymol. 1986;128:320–339. doi: 10.1016/0076-6879(86)28077-5. [DOI] [PubMed] [Google Scholar]
- Steinberg D., Carew T. E., Fielding C., Fogelman A. M., Mahley R. W., Sniderman A. D., Zilversmit D. B. Lipoproteins and the pathogenesis of atherosclerosis. Circulation. 1989 Sep;80(3):719–723. doi: 10.1161/01.cir.80.3.719. [DOI] [PubMed] [Google Scholar]
- Steinmetz A., Utermann G. Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV. J Biol Chem. 1985 Feb 25;260(4):2258–2264. [PubMed] [Google Scholar]
- Sviridov D. D., Pavlov M. Y., Safonova I. G., Repin V. S., Smirnov V. N. Inhibition of cholesterol synthesis and esterification regulates high density lipoprotein interaction with isolated epithelial cells of human small intestine. J Lipid Res. 1990 Oct;31(10):1821–1830. [PubMed] [Google Scholar]
- Talalay P. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul. 1989;28:237–250. doi: 10.1016/0065-2571(89)90074-5. [DOI] [PubMed] [Google Scholar]
- Tauber J. P., Goldminz D., Gospodarowicz D. Up-regulation in vascular endothelial cells of binding sites of high density lipoprotein induced by 25-hydroxycholesterol. Eur J Biochem. 1981 Oct;119(2):327–339. doi: 10.1111/j.1432-1033.1981.tb05612.x. [DOI] [PubMed] [Google Scholar]
- Telakowski-Hopkins C. A., Rodkey J. A., Bennett C. D., Lu A. Y., Pickett C. B. Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit. J Biol Chem. 1985 May 10;260(9):5820–5825. [PubMed] [Google Scholar]
- Traill K. N., Böck G., Winter U., Hilchenbach M., Jürgens G., Wick G. Simple method for comparing large numbers of flow cytometry histograms exemplified by analysis of the CD4 (T4) antigen and LDL receptor on human peripheral blood lymphocytes. J Histochem Cytochem. 1986 Sep;34(9):1217–1221. doi: 10.1177/34.9.2426348. [DOI] [PubMed] [Google Scholar]
- Traill K. N., Huber L. A., Wick G., Jürgens G. Lipoprotein interactions with T cells: an update. Immunol Today. 1990 Nov;11(11):411–417. doi: 10.1016/0167-5699(90)90161-2. [DOI] [PubMed] [Google Scholar]
- Traill K. N., Jürgens G., Böck G., Wick G. High density lipoprotein uptake by freshly isolated human peripheral blood T lymphocytes. Immunobiology. 1987 Nov;175(5):447–454. doi: 10.1016/S0171-2985(87)80072-4. [DOI] [PubMed] [Google Scholar]
- Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985 Jan;45(1):1–8. [PubMed] [Google Scholar]
- Wick G., Huber L. A., Xu Q. B., Jarosch E., Schönitzer D., Jürgens G. The decline of the immune response during aging: the role of an altered lipid metabolism. Ann N Y Acad Sci. 1991;621:277–290. doi: 10.1111/j.1749-6632.1991.tb16986.x. [DOI] [PubMed] [Google Scholar]
- Wogan G. N. Dietary factors and special epidemiological situations of liver cancer in Thailand and Africa. Cancer Res. 1975 Nov;35(11 Pt 2):3499–3502. [PubMed] [Google Scholar]
- Xu Q., Jürgens G., Huber L. A., Böck G., Wolf H., Wick G. Lipid utilization by human lymphocytes is correlated with high-density-lipoprotein binding site activity. Biochem J. 1992 Jul 1;285(Pt 1):105–112. doi: 10.1042/bj2850105. [DOI] [PMC free article] [PubMed] [Google Scholar]


