Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Oct 15;279(Pt 2):537–544. doi: 10.1042/bj2790537

Structure--function relationship of the human erythrocyte plasma membrane Ca(2+)-ATPase revealed by V8 protease treatment.

K K Wang 1, B D Roufogalis 1, T H Kuo 1
PMCID: PMC1151637  PMID: 1835379

Abstract

Treatment of the solubilized and purified Ca(2+)-translocating ATPase (Ca(2+)-ATPase) (136 kDa) from human erythrocyte plasma membranes with endoproteinase Glu-C from Staphylococcus aureus strain V8 (V8 protease) yielded transient fragments of 96 kDa and 76 kDa and more stable fragments of 60 kDa and 37/36 kDa (doublet). The presence of calmodulin did not alter the fragmentation pattern. The 60 kDa fragment contains the protein kinase C (bovine brain) phosphorylation site(s), which we previously localized in the C-terminal region [Wang, Wright, Machan, Allen, Conigrave & Roufogalis (1991) J. Biol. Chem. 266, 9078-9085]. On the other hand, the 37/36 kDa fragments possess the ability to form an acyl-phosphate intermediate. Furthermore, the presence of the 60 kDa and 37/36 kDa fragments together results in expression of calmodulin-sensitive Ca(2+)-ATPase activity. However, further degradation of the 60 kDa fragment was coupled with the appearance of calmodulin-independent activity, whereas the 37/36 kDa fragment doublet remained stable. It was concluded that the 60 kDa and the 37/36 kDa fragments: (a) together represent the C-terminal two-thirds of the enzyme, which is functional as an Ca(2+)-ATPase, (b) were produced by a single cleavage near the C-terminal side of the cytosolic catalytic domain, and (c) probably remain physically and functionally associated even after cleavage has occurred. At the C-terminus, the basic calmodulin-binding domain is flanked by two highly acidic regions (domains A and B). Our results indicate that domains A and B, despite containing many Asp and Glu residues, were not readily cleaved by V8 protease, which is known to cleave selectively peptide bonds at the C-terminal side of Asp and Glu. However, if the Ca(2+)-ATPase were pre-digested with calpain I from human erythrocytes, which removed its calmodulin-binding domain (along with domain B), multiple cleavages by V8 protease in domain A were then readily observed. We propose that the calmodulin-binding domain is closely associated with the acidic domains A and B and that these acidic domains might help to co-ordinate the stimulation of the enzyme by calmodulin.

Full text

PDF
537

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benaim G., Clark A., Carafoli E. ATPase activity and Ca2+ transport by reconstituted tryptic fragments of the Ca2+ pump of the erythrocyte plasma membrane. Cell Calcium. 1986 Jun;7(3):175–186. doi: 10.1016/0143-4160(86)90021-7. [DOI] [PubMed] [Google Scholar]
  2. Benaim G., Zurini M., Carafoli E. Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. J Biol Chem. 1984 Jul 10;259(13):8471–8477. [PubMed] [Google Scholar]
  3. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  4. Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
  5. Enyedi A., Flura M., Sarkadi B., Gardos G., Carafoli E. The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J Biol Chem. 1987 May 5;262(13):6425–6430. [PubMed] [Google Scholar]
  6. Falchetto R., Vorherr T., Brunner J., Carafoli E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem. 1991 Feb 15;266(5):2930–2936. [PubMed] [Google Scholar]
  7. Goldstein D. A. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands. Biophys J. 1979 May;26(2):235–242. doi: 10.1016/S0006-3495(79)85247-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greeb J., Shull G. E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem. 1989 Nov 5;264(31):18569–18576. [PubMed] [Google Scholar]
  9. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. James P., Maeda M., Fischer R., Verma A. K., Krebs J., Penniston J. T., Carafoli E. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 1988 Feb 25;263(6):2905–2910. [PubMed] [Google Scholar]
  11. James P., Vorherr T., Krebs J., Morelli A., Castello G., McCormick D. J., Penniston J. T., De Flora A., Carafoli E. Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem. 1989 May 15;264(14):8289–8296. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  14. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  15. Olorunsogo O. O., Villalobo A., Wang K. K., Roufogalis B. D. The effect of calmodulin on the interaction of carbodiimides with the purified human erythrocyte (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1988 Nov 3;945(1):33–40. doi: 10.1016/0005-2736(88)90359-8. [DOI] [PubMed] [Google Scholar]
  16. Raess B. U., Vincenzi F. F. A semi-automated method for the determination of multiple membrane ATPase activities. J Pharmacol Methods. 1980 Nov;4(3):273–283. doi: 10.1016/0160-5402(80)90019-4. [DOI] [PubMed] [Google Scholar]
  17. Sarkadi B., Enyedi A., Földes-Papp Z., Gárdos G. Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis. J Biol Chem. 1986 Jul 15;261(20):9552–9557. [PubMed] [Google Scholar]
  18. Shull G. E., Greeb J. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem. 1988 Jun 25;263(18):8646–8657. [PubMed] [Google Scholar]
  19. Strehler E. E., James P., Fischer R., Heim R., Vorherr T., Filoteo A. G., Penniston J. T., Carafoli E. Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. J Biol Chem. 1990 Feb 15;265(5):2835–2842. [PubMed] [Google Scholar]
  20. Verma A. K., Filoteo A. G., Stanford D. R., Wieben E. D., Penniston J. T., Strehler E. E., Fischer R., Heim R., Vogel G., Mathews S. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem. 1988 Oct 5;263(28):14152–14159. [PubMed] [Google Scholar]
  21. Wang K. K., Roufogalis B. D., Villalobo A. Further characterization of calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca2+-ATPase. Arch Biochem Biophys. 1988 Nov 15;267(1):317–327. doi: 10.1016/0003-9861(88)90037-9. [DOI] [PubMed] [Google Scholar]
  22. Wang K. K., Villalobo A., Roufogalis B. D. Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Arch Biochem Biophys. 1988 Feb 1;260(2):696–704. doi: 10.1016/0003-9861(88)90498-5. [DOI] [PubMed] [Google Scholar]
  23. Wang K. K., Villalobo A., Roufogalis B. D. Calmodulin-binding proteins as calpain substrates. Biochem J. 1989 Sep 15;262(3):693–706. doi: 10.1042/bj2620693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang K. K., Wright L. C., Machan C. L., Allen B. G., Conigrave A. D., Roufogalis B. D. Protein kinase C phosphorylates the carboxyl terminus of the plasma membrane Ca(2+)-ATPase from human erythrocytes. J Biol Chem. 1991 May 15;266(14):9078–9085. [PubMed] [Google Scholar]
  25. Zurini M., Krebs J., Penniston J. T., Carafoli E. Controlled proteolysis of the purified Ca2+-ATPase of the erythrocyte membrane. A correlation between the structure and the function of the enzyme. J Biol Chem. 1984 Jan 10;259(1):618–627. [PubMed] [Google Scholar]
  26. Zvaritch E., James P., Vorherr T., Falchetto R., Modyanov N., Carafoli E. Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis. Biochemistry. 1990 Sep 4;29(35):8070–8076. doi: 10.1021/bi00487a012. [DOI] [PubMed] [Google Scholar]
  27. le Maire M., Lund S., Viel A., Champeil P., Moller J. V. Ca2(+)-induced conformational changes and location of Ca2+ transport sites in sarcoplasmic reticulum Ca2(+)-ATPase as detected by the use of proteolytic enzyme (V8). J Biol Chem. 1990 Jan 15;265(2):1111–1123. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES