Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Oct 15;279(Pt 2):575–579. doi: 10.1042/bj2790575

Evidence for masking of brown adipose tissue mitochondrial GDP-binding sites in response to fasting in rats made obese by dietary manipulation. Effects of reversion to standard diet.

P Puigserver 1, I Lladó 1, A Palou 1, M Gianotti 1
PMCID: PMC1151642  PMID: 1953651

Abstract

A specific immunoassay of uncoupling protein (UCP) and measurement of GDP binding were used to study the chronic responses of brown adipose tissue (BAT) mitochondria from rats made obese by dietary means (cafeteria rats) and from obese rats subsequently fed a standard diet (post-cafeteria rats). We studied the response to fasting in order to assess the masking/unmasking responses in these groups. These studies have shown the following. (1) In the obese rats (cafeteria and post-cafeteria) the chronic increase in mitochondrial UCP concentration compared with controls parallels the increase in GDP binding. (2) In 24 h-fasted control rats the decrease in GDP binding is associated with a change in UCP concentration, but in fasting cafeteria and post-cafeteria obese rats the decrease in GDP binding is not associated with any change in UCP concentration. (3) Post-cafeteria obese rats showed increased GDP binding and higher UCP concentrations than the controls, but these values were less than in cafeteria obese rats. (4) Control rats at 8 months old showed greater GDP binding and had a higher UCP concentration than 11-month-old control rats. (5) The responses of GDP binding and UCP concentration to fasting in post-cafeteria obese rats were similar to those in cafeteria obese rats, suggesting that such abbreviations are related to the obese status itself rather than to the composition of the cafeteria diet. The evidence supports the hypothesis that the response of the cafeteria and post-cafeteria obese rats to fasting is associated with a masking of UCP, whereas with chronic manipulation of diet changes in UCP concentration predominate.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Desautels M., Dulos R. A., Mozaffari B. Selective loss of uncoupling protein from mitochondria of surgically denervated brown adipose tissue of cold-acclimated mice. Biochem Cell Biol. 1986 Nov;64(11):1125–1134. doi: 10.1139/o86-148. [DOI] [PubMed] [Google Scholar]
  2. Desautels M. Mitochondrial thermogenin content is unchanged during atrophy of BAT of fasting mice. Am J Physiol. 1985 Jul;249(1 Pt 1):E99–106. doi: 10.1152/ajpendo.1985.249.1.E99. [DOI] [PubMed] [Google Scholar]
  3. Desautels M., Zaror-Behrens G., Himms-Hagen J. Increased purine nucleotide binding, altered polypeptide composition, and thermogenesis in brown adipose tissue mitochondria of cold-acclimated rats. Can J Biochem. 1978 Jun;56(6):378–383. doi: 10.1139/o78-060. [DOI] [PubMed] [Google Scholar]
  4. Gianotti M., Roca P., Palou A. Body weight and tissue composition in rats made obese by a cafeteria diet. Effect of 24 hours starvation. Horm Metab Res. 1988 Apr;20(4):208–212. doi: 10.1055/s-2007-1010795. [DOI] [PubMed] [Google Scholar]
  5. Gribskov C. L., Henningfield M. F., Swick A. G., Swick R. W. Evidence for unmasking of rat brown-adipose-tissue mitochondrial GDP-binding sites in response to acute cold exposure. Effects of washing with albumin on GDP binding. Biochem J. 1986 Feb 1;233(3):743–747. doi: 10.1042/bj2330743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heaton G. M., Wagenvoord R. J., Kemp A., Jr, Nicholls D. G. Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem. 1978 Jan 16;82(2):515–521. doi: 10.1111/j.1432-1033.1978.tb12045.x. [DOI] [PubMed] [Google Scholar]
  7. Hennessey J. P., Jr, Scarborough G. A. An optimized procedure for sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of hydrophobic peptides from an integral membrane protein. Anal Biochem. 1989 Feb 1;176(2):284–289. doi: 10.1016/0003-2697(89)90310-2. [DOI] [PubMed] [Google Scholar]
  8. Henningfield M. F., Swick R. W. Immunochemical detection and quantitation of brown adipose tissue uncoupling protein. Biochem Cell Biol. 1987 Mar;65(3):245–251. doi: 10.1139/o87-032. [DOI] [PubMed] [Google Scholar]
  9. Herron D., Rehnmark S., Néchad M., Loncar D., Cannon B., Nedergaard J. Norepinephrine-induced synthesis of the uncoupling protein thermogenin (UCP) and its mitochondrial targeting in brown adipocytes differentiated in culture. FEBS Lett. 1990 Jul 30;268(1):296–300. doi: 10.1016/0014-5793(90)81031-i. [DOI] [PubMed] [Google Scholar]
  10. Himms-Hagen J. Brown adipose tissue thermogenesis and obesity. Prog Lipid Res. 1989;28(2):67–115. doi: 10.1016/0163-7827(89)90009-x. [DOI] [PubMed] [Google Scholar]
  11. Holloway B. R., Davidson R. G., Freeman S., Wheeler H., Stribling D. Post-natal development of interscapular (brown) adipose tissue in the guinea pig: effect of environmental temperature. Int J Obes. 1984;8(4):295–303. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Levin I., Trayhurn P. Thermogenic activity and capacity of brown fat in fasted and refed golden hamsters. Am J Physiol. 1987 May;252(5 Pt 2):R987–R993. doi: 10.1152/ajpregu.1987.252.5.R987. [DOI] [PubMed] [Google Scholar]
  14. Lin C. S., Hackenberg H., Klingenberg E. M. The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study. FEBS Lett. 1980 May 5;113(2):304–306. doi: 10.1016/0014-5793(80)80614-4. [DOI] [PubMed] [Google Scholar]
  15. Milner R. E., Wilson S., Arch J. R., Trayhurn P. Acute effects of a beta-adrenoceptor agonist (BRL 26830A) on rat brown-adipose-tissue mitochondria. Increased GDP binding and GDP-sensitive proton conductance without changes in the concentration of uncoupling protein. Biochem J. 1988 Feb 1;249(3):759–763. doi: 10.1042/bj2490759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moore B. J. The cafeteria diet--an inappropriate tool for studies of thermogenesis. J Nutr. 1987 Feb;117(2):227–231. doi: 10.1093/jn/117.2.227. [DOI] [PubMed] [Google Scholar]
  17. Nedergaard J., Cannon B. Apparent unmasking of [3H]GDP binding in rat brown-fat mitochondria is due to mitochondrial swelling. Eur J Biochem. 1987 May 4;164(3):681–686. doi: 10.1111/j.1432-1033.1987.tb11180.x. [DOI] [PubMed] [Google Scholar]
  18. Nedergaard J., Cannon B. [3H]GDP binding and thermogenin amount in brown adipose tissue mitochondria from cold-exposed rats. Am J Physiol. 1985 Mar;248(3 Pt 1):C365–C371. doi: 10.1152/ajpcell.1985.248.3.C365. [DOI] [PubMed] [Google Scholar]
  19. Nedergaard J., Raasmaja A., Cannon B. Parallel increases in amount of (3H)GDP binding and thermogenin antigen in brown-adipose-tissue mitochondria of cafeteria-fed rats. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1328–1336. doi: 10.1016/0006-291x(84)91237-3. [DOI] [PubMed] [Google Scholar]
  20. Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
  21. Peachey T., French R. R., York D. A. Regulation of GDP binding and uncoupling-protein concentration in brown-adipose-tissue mitochondria. The effects of cold-acclimation, warm-reacclimation and noradrenaline. Biochem J. 1988 Jan 15;249(2):451–457. doi: 10.1042/bj2490451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rial E., Nicholls D. G. The mitochondrial uncoupling protein from guinea-pig brown adipose tissue. Synchronous increase in structural and functional parameters during cold-adaptation. Biochem J. 1984 Sep 15;222(3):685–693. doi: 10.1042/bj2220685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ricquier D., Mory G., Bouillaud F., Thibault J., Weissenbach J. Rapid increase of mitochondrial uncoupling protein and its mRNA in stimulated brown adipose tissue. Use of a cDNA probe. FEBS Lett. 1984 Dec 10;178(2):240–244. doi: 10.1016/0014-5793(84)80608-0. [DOI] [PubMed] [Google Scholar]
  24. Roca P., Gianotti M., Palou A. Metabolic response to short term starvation in non-pregnant and late pregnant cafeteria-obese rats. Arch Int Physiol Biochim. 1989 Feb;97(1):29–35. doi: 10.3109/13813458909075044. [DOI] [PubMed] [Google Scholar]
  25. Rodríguez-Vico F., Martínez-Cayuela M., García-Peregrín E., Ramírez H. A procedure for eliminating interferences in the lowry method of protein determination. Anal Biochem. 1989 Dec;183(2):275–278. doi: 10.1016/0003-2697(89)90479-x. [DOI] [PubMed] [Google Scholar]
  26. Rothwell N. J., Stock M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979 Sep 6;281(5726):31–35. doi: 10.1038/281031a0. [DOI] [PubMed] [Google Scholar]
  27. Rothwell N. J., Stock M. J. Effects of age on diet-induced thermogenesis and brown adipose tissue metabolism in the rat. Int J Obes. 1983;7(6):583–589. [PubMed] [Google Scholar]
  28. Sclafani A., Gorman A. N. Effects of age, sex, and prior body weight on the development of dietary obesity in adult rats. Physiol Behav. 1977 Jun;18(6):1021–1026. doi: 10.1016/0031-9384(77)90006-3. [DOI] [PubMed] [Google Scholar]
  29. Serra F., Bonet L., Palou A. Amino-acid-enzyme activities in brown and white adipose tissues and in the liver of cafeteria rats. Effects of 24 hours starving. Arch Int Physiol Biochim. 1987 Nov;95(4):263–268. [PubMed] [Google Scholar]
  30. Shrago E., Strieleman P. J. The biochemical mechanism of brown fat thermogenesis. World Rev Nutr Diet. 1987;53:171–217. doi: 10.1159/000415297. [DOI] [PubMed] [Google Scholar]
  31. Swick A. G., Kemnitz J. W., Houser W. D., Swick R. W. Norepinephrine stimulates activity of brown adipose tissue in rhesus monkeys. Int J Obes. 1986;10(3):241–244. [PubMed] [Google Scholar]
  32. Swick A. G., Swick R. W. Rapid changes in number of GDP binding sites on brown adipose tissue mitochondria. Am J Physiol. 1986 Aug;251(2 Pt 1):E192–E195. doi: 10.1152/ajpendo.1986.251.2.E192. [DOI] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trayhurn P., Ashwell M., Jennings G., Richard D., Stirling D. M. Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat. Am J Physiol. 1987 Feb;252(2 Pt 1):E237–E243. doi: 10.1152/ajpendo.1987.252.2.E237. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES