Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Apr 15;212(1):15–24. doi: 10.1042/bj2120015

Fluorescence-microscopic measurement of intracellular cytochrome P-450 enzyme activity (ethoxyresorufin O-de-ethylation) in unfixed liver section.

M D Burke, G I Murray, G M Lees
PMCID: PMC1152004  PMID: 6870848

Abstract

A fluorescence-microscopic method has been developed for measurement of the intracellular kinetics of the cytochrome P-450 reaction, ethoxyresorufin O-de-ethylation, in individual hepatocytes in unfixed non-frozen liver sections obtained from control or 3-methylcholanthrene-pretreated mice. De-ethylation was enhanced in the presence of salicylamide, but inhibited in the presence of alpha-naphthoflavone, A total of 21 reaction rate curves (fluorescence of the metabolite, resorufin, versus time) were constructed for different individual hepatocytes and groups of two or three hepatocytes, in a total of 12 sections from four control and eight 3-methylcholanthrene-induced mice. No two reaction curves were identical, but the curves were classified, by similarity of curve shape and fluorescence intensity, into three control categories and four 3-methylcholanthrene-induced categories. It was considered that the data represented a total of seven types of hepatocytes, which differed in their ethoxyresorufin de-ethylase reaction characteristics. Hepatocytes in the sections from 3-methylcholanthrene-pretreated mice showed higher de-ethylase activities than the hepatocytes from control mice, but the increase in activity covered a wide range of values, from 3-fold to 17-fold higher than the mean control value, suggesting that 3-methylcholanthrene did not induce ethoxyresorufin de-ethylation to the same extent in all hepatocytes.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron J., Redick J. A., Guengerich F. P. An immunohistochemical study on the localization and distributions of phenobarbital- and 3-methylcholanthrene-inducible cytochromes P-450 within the livers of untreated rats. J Biol Chem. 1981 Jun 10;256(11):5931–5937. [PubMed] [Google Scholar]
  2. Baron J., Redick J. A., Guengerich F. P. Effects of 3-methylcholanthrene, beta-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozyme of cytochrome P-450 within centrilobular, midzonal, and periportal hepatocytes. J Biol Chem. 1982 Jan 25;257(2):953–957. [PubMed] [Google Scholar]
  3. Bazer G. T., Knight D. S. An inexpensive vibrating microtome for sectioning fixed tissue. Stain Technol. 1980 Jan;55(1):39–42. doi: 10.3109/10520298009067894. [DOI] [PubMed] [Google Scholar]
  4. Bennett P. N., Blackwell E., Davies D. S. Competition for sulphate during detoxification in the gut wall. Nature. 1975 Nov 20;258(5532):247–248. doi: 10.1038/258247a0. [DOI] [PubMed] [Google Scholar]
  5. Bentley P., Waechter F., Oesch F., Stäubli W. Immunochemical localization of epoxide hydratase in rat liver: effects of 2-acetylaminofluorene. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1101–1108. doi: 10.1016/0006-291x(79)91994-6. [DOI] [PubMed] [Google Scholar]
  6. Burke M. D., Hallman H. Microfluorimetric analysis of the cytochrome P448 associated, ethoxyresorufin O-deethylase activities of individual isolated rat hepatocytes. Biochem Pharmacol. 1978;27(11):1539–1544. doi: 10.1016/0006-2952(78)90482-3. [DOI] [PubMed] [Google Scholar]
  7. Burke M. D., Mayer R. T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos. 1974 Nov-Dec;2(6):583–588. [PubMed] [Google Scholar]
  8. Burke M. D., Mayer R. T. Inherent specificities of purified cytochromes P-450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation. Drug Metab Dispos. 1975 Jul-Aug;3(4):245–253. [PubMed] [Google Scholar]
  9. Burke M. D., Orrenius S. The effect of albumin on the metabolism of ethoxyresorufin through O-deethylation and sulphate-conjugation using isolated rat hepatocytes. Biochem Pharmacol. 1978;27(11):1533–1538. doi: 10.1016/0006-2952(78)90481-1. [DOI] [PubMed] [Google Scholar]
  10. Burke M. D., Prough R. A., Mayer R. T. Characteristics of a microsomal cytochrome P-448-mediated reaction. Ethoxyresorufin O-de-ethylation. Drug Metab Dispos. 1977 Jan-Feb;5(1):1–8. [PubMed] [Google Scholar]
  11. Gangolli S., Wright M. The histochemical demonstration of aniline hydroxylase activity in rat liver. Histochem J. 1971 Mar;3(2):107–116. [PubMed] [Google Scholar]
  12. Gooding P. E., Chayen J., Sawyer B., Slater T. F. Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration. Chem Biol Interact. 1978 Mar;20(3):299–310. doi: 10.1016/0009-2797(78)90108-4. [DOI] [PubMed] [Google Scholar]
  13. Goujon F. M., Nebert D. W., Gielen J. E. Genetic expression of aryl hydrocarbon hydroxylase induction. IV. Interaction of various compounds with different forms of cytochrome P-450 and the effect on benzo(a)pyrene metabolism in vitro. Mol Pharmacol. 1972 Nov;8(6):667–680. [PubMed] [Google Scholar]
  14. Heath E. C., Dingell J. V. The interaction of foreign chemical compounds with the glucuronidation of estrogens in vitro. Drug Metab Dispos. 1974 Nov-Dec;2(6):556–565. [PubMed] [Google Scholar]
  15. Hunter A. L., Holscher M. A., Neal R. A. Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J Pharmacol Exp Ther. 1977 Feb;200(2):439–448. [PubMed] [Google Scholar]
  16. James R., Desmond P., Küpfer A., Schenker S., Branch R. A. The differential localization of various drug metabolizing systems within the rat liver lobule as determined by the hepatotoxins allyl alcohol, carbon tetrachloride and bromobenzene. J Pharmacol Exp Ther. 1981 Apr;217(1):127–132. [PubMed] [Google Scholar]
  17. Ji S., Lemasters J. J., Thurman R. G. A fluorometric method to measure sublobular rates of mixed-function oxidation in the hemoglobin-free perfused rat liver. Mol Pharmacol. 1981 May;19(3):513–516. [PubMed] [Google Scholar]
  18. Lu A. Y., West S. B. Multiplicity of mammalian microsomal cytochromes P-45. Pharmacol Rev. 1979 Dec;31(4):277–295. [PubMed] [Google Scholar]
  19. Mitchell J. R., Nelson S. D., Thorgeirsson S. S., McMurtry R. J., Dybing E. Metabolic activation: biochemical basis for many drug-induced liver injuries. Prog Liver Dis. 1976;5:259–279. [PubMed] [Google Scholar]
  20. Rappaport A. M. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol. 1976 May;157(3):215–243. doi: 10.1016/s0005-8165(76)80083-2. [DOI] [PubMed] [Google Scholar]
  21. Redick J. A., Kawabata T. T., Guengerich F. P., Krieter P. A., Shires T. K., Baron J. Distributions of monooxygenase components and epoxide hydratase within the livers of untreated male rats. Life Sci. 1980 Dec 22;27(25-26):2465–2470. doi: 10.1016/0024-3205(80)90523-8. [DOI] [PubMed] [Google Scholar]
  22. Rost F. W., Ewen S. W. New methods for the histochemical demonstration of catecholamines, tryptamines, histamine and other arylethylamines by acid- and aldehyde-induced fluorescence. Histochem J. 1971 May;3(3):207–212. doi: 10.1007/BF01002565. [DOI] [PubMed] [Google Scholar]
  23. Smith A. C., Freeman R. W., Harbison R. D. Ethanol enhancement of cocaine-induced hepatotoxicity. Biochem Pharmacol. 1981 Mar 1;30(5):453–458. doi: 10.1016/0006-2952(81)90630-4. [DOI] [PubMed] [Google Scholar]
  24. Sweeney G. D., Garfield R. E., Jones K. G., Latham A. N. Studies using sedimentation velocity on heterogeneity of size and function of hepatocytes from mature male rats. J Lab Clin Med. 1978 Mar;91(3):432–443. [PubMed] [Google Scholar]
  25. Sweeney G. D., Jones K. G., Krestynski F. Effects of phenobarbital and 3-methylcholanthrene pretreatment on size, sedimentation velocity, and mixed function oxygenase activity of rat hepatocytes. J Lab Clin Med. 1978 Mar;91(3):444–454. [PubMed] [Google Scholar]
  26. Taira Y., Greenspan P., Kapke G. F., Redick J. A., Baron J. Effects of phenobarbital, pregnenolone-16 alpha-carbonitrile, and 3-methylcholanthrene pretreatments on the distribution of NADPH-cytochrome c (P-450) reductase within the liver lobule. Mol Pharmacol. 1980 Sep;18(2):304–312. [PubMed] [Google Scholar]
  27. Ullrich V., Weber P., Wollenberg P. Tetrahydrofurane - an inhibitor for ethanol-induced liver microsomal cytochrome P450. Biochem Biophys Res Commun. 1975 Jan 2;64(3):808–813. doi: 10.1016/0006-291x(75)90119-9. [DOI] [PubMed] [Google Scholar]
  28. Urade Y., Yoshida R., Kitamura H., Hayaishi O. Heterogeneous localization of two cytochrome P-450-dependent monooxygenase activities in dispersed cells of mouse lung. Biochem Biophys Res Commun. 1982 Mar 30;105(2):567–574. doi: 10.1016/0006-291x(82)91472-3. [DOI] [PubMed] [Google Scholar]
  29. Wiebel F. J., Leutz J. C., Diamond L., Gelboin H. V. Aryl hydrocarbon (benzo(a)pyrene) hydroxylase in microsomes from rat tissues: differential inhibition and stimulation by benzoflavones and organic solvents. Arch Biochem Biophys. 1971 May;144(1):78–86. doi: 10.1016/0003-9861(71)90456-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES