Abstract
Two models of the action of uncoupler molecules in inhibiting photophosphorylation in bacterial chromatophores are considered: either uncoupler molecules shuttle rapidly between energy-coupling sites, or uncoupler molecules that are bound to particular sites in the chromatophores for a time that is comparable with the turnover time of the photophosphorylation apparatus may uncouple by a co-operative "substoichiometric' mechanism. It is found that the titre of uncoupler necessary to cause complete uncoupling is lowered if the rate of photophosphorylation is initially decreased by partially restricting electron flow with an appropriate titre of antimycin A. This result indicates that uncoupler molecules shuttle rapidly between energy coupling in which the energized intermediate between electron transport and phosphorylation is delocalized over the entire chromatophore membrane and those in which it is not. If the rate of photophosphorylation is partially restricted with the covalent H+-translocating ATP synthase inhibitor dicyclohexylcarbodi-imide, the titre of uncoupler necessary to effect complete inhibition of photophosphorylation is also decreased relative to that in which the covalent H+-ATP synthase inhibitor is absent. This important result appears to be inconsistent with models of electron-transport phosphorylation in which the "energized state' of the chromatophore membrane that is set up by electron transport and utilized in photophosphorylation is delocalized over the entire chromatophore membrane.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baccarini Melandri A., Casadio R., Melandri B. A. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons. Eur J Biochem. 1977 Sep;78(2):389–402. doi: 10.1111/j.1432-1033.1977.tb11751.x. [DOI] [PubMed] [Google Scholar]
- Decker S. J., Lang D. R. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. J Biol Chem. 1978 Oct 10;253(19):6738–6743. [PubMed] [Google Scholar]
- Ernster L. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation. Annu Rev Biochem. 1977;46:981–995. doi: 10.1146/annurev.bi.46.070177.005001. [DOI] [PubMed] [Google Scholar]
- Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
- Hanstein W. G. Uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 1976 Sep 27;456(2):129–148. doi: 10.1016/0304-4173(76)90010-0. [DOI] [PubMed] [Google Scholar]
- Hitchens G. D., Kell D. B. Localized energy coupling during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22. Biosci Rep. 1982 Oct;2(10):743–749. doi: 10.1007/BF01114933. [DOI] [PubMed] [Google Scholar]
- Hitchens G. D., Kell D. B. On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22. Biochem J. 1982 Aug 15;206(2):351–357. doi: 10.1042/bj2060351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv Enzymol Relat Areas Mol Biol. 1980;51:75–106. doi: 10.1002/9780470122969.ch2. [DOI] [PubMed] [Google Scholar]
- Kell D. B., John P., Ferguson S. J. On the current-voltage relationships of energy-transducing membranes: phosphorylating membrane vesicles from Paracoccus denitrificans [proceedings]. Biochem Soc Trans. 1978;6(6):1292–1295. doi: 10.1042/bst0061292. [DOI] [PubMed] [Google Scholar]
- Kell D. B. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta. 1979 Jul 3;549(1):55–99. doi: 10.1016/0304-4173(79)90018-1. [DOI] [PubMed] [Google Scholar]
- LEE C. P., ERNSTER L. RESTORATION OF OXIDATIVE PHOSPHORYLATION IN NON-PHOSPHORYLATING SUBMITOCHONDRIAL PARTICLES BY OLIGOMYCIN. Biochem Biophys Res Commun. 1965 Feb 17;18:523–529. doi: 10.1016/0006-291x(65)90785-0. [DOI] [PubMed] [Google Scholar]
- Malpress F. H. On the chemiosmotic hypothesis and the nature of the mitochondrial protonmotive force. J Theor Biol. 1981 Oct 7;92(3):255–265. doi: 10.1016/0022-5193(81)90291-5. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. G., Dilger J. P. Transport of protons across membranes by weak acids. Physiol Rev. 1980 Jul;60(3):825–863. doi: 10.1152/physrev.1980.60.3.825. [DOI] [PubMed] [Google Scholar]
- Melandri B. A., Venturoli G., de Santis A., Baccarini-Melandri A. The induction kinetics of bacterial photophosphorylation. Threshold effects by the phosphate potential and correlation with the amplitude of the carotenoid absorption band shift. Biochim Biophys Acta. 1980 Aug 5;592(1):38–52. doi: 10.1016/0005-2728(80)90112-7. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–1159. doi: 10.1126/science.388618. [DOI] [PubMed] [Google Scholar]
- Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
- NISHIMURA M., ITO T., CHANCE B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation. Biochim Biophys Acta. 1962 May 7;59:177–182. [PubMed] [Google Scholar]
- Petty K. M., Jackson J. B. Kinetic factors limiting the synthesis of ATP by chromatophores exposed to short flash excitation. Biochim Biophys Acta. 1979 Sep 11;547(3):474–483. doi: 10.1016/0005-2728(79)90028-8. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. Phase transitions and coupling in energy transducing membranes. FEBS Lett. 1978 Oct 15;94(2):295–297. doi: 10.1016/0014-5793(78)80960-0. [DOI] [PubMed] [Google Scholar]
- Terada H. The interaction of highly active uncouplers with mitochondria. Biochim Biophys Acta. 1981 Dec 30;639(3-4):225–242. doi: 10.1016/0304-4173(81)90011-2. [DOI] [PubMed] [Google Scholar]
- Terada H., VAN Dam K. On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile). Biochim Biophys Acta. 1975 Jun 17;387(3):507–518. doi: 10.1016/0005-2728(75)90089-4. [DOI] [PubMed] [Google Scholar]
- Westerhoff H. V., Simonetti A. L., Van Dam K. The hypothesis of localized chemiosmosis is unsatisfactory. Biochem J. 1981 Nov 15;200(2):193–202. doi: 10.1042/bj2000193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. J. The history and the hypotheses concerning ATP-formation by energised protons. FEBS Lett. 1978 Jan 1;85(1):9–19. doi: 10.1016/0014-5793(78)81238-1. [DOI] [PubMed] [Google Scholar]
- del Valle-Tascon S., van Grondelle R., Duysens L. N. Flash-induced photophosphorylation in Rhodospirillum rubrum chromatophores. I. The relationship between cytochrome c-420 content and photophosphorylation. Biochim Biophys Acta. 1978 Oct 11;504(1):26–39. doi: 10.1016/0005-2728(78)90004-x. [DOI] [PubMed] [Google Scholar]