Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Apr 15;212(1):85–91. doi: 10.1042/bj2120085

Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin and angiotensin. A possible mechanism of action.

M C Sugden, D I Watts
PMCID: PMC1152013  PMID: 6409102

Abstract

Adrenaline, noradrenaline, vasopressin and angiotensin increased 14CO2 production from [1-14C]oleate by hepatocytes from fed rats but not by hepatocytes from starved rats. The hormones did not increase 14CO2 production when hepatocytes from fed rats were depleted of glycogen in vitro. Increased 14CO2 production from ]1-14C]oleate in response to the hormones was observed when hepatocytes from starved rats were incubated with 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. 3-Mercaptopicolinate inhibited uptake and esterification of [1-14C]oleate, slightly increased 14CO2 production from [1-14C]oleate and greatly increased the [3-hydroxybutyrate]/[acetoacetate] ratio. In the presence of 3-mercaptopicolinate 14CO2 production in response to the catecholamines was blocked by the alpha-antagonist phentolamine and required extracellular Ca2+. The effects of vasopressin and angiotensin were also Ca2+-dependent. The actions of the hormones of 14CO2 production from [I-14C]oleate by hepatocytes from starved rats in the presence of 3-mercaptopicolinate thus have the characteristics of the response to the hormones found with hepatocytes from fed rats incubated without 3-mercaptopicolinate. The stimulatory effects of the hormones on 14CO2 production from [1-14C]oleate were not the result of decreased esterification (as the hormones increased esterification) or increased beta-oxidation. It is suggested that the effect of the hormones to increase 14CO2 production from [1-14C]oleate are mediated by CA2+-activation of NAD+-linked isocitrate dehydrogenase, the 2-oxoglutarate dehydrogenase complex, and/or electron transport. The results also demonstrate that when the supply of oxaloacetate is limited it is utilized for gluconeogenesis rather than to maintain tricarboxylic acid-cycle flux.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaban R. S., Blum J. J. Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. Am J Physiol. 1982 Mar;242(3):C172–C177. doi: 10.1152/ajpcell.1982.242.3.C172. [DOI] [PubMed] [Google Scholar]
  2. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackshear P. J., Holloway P. A., Aberti K. G. The effects of inhibition of gluconeogenesis on ketogenesis in starved and diabetic rats. Biochem J. 1975 Jun;148(3):353–362. doi: 10.1042/bj1480353b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Declercq P. E., Debeer L. J., Mannaerts G. P. Role of glycerol 3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis. Biochem J. 1982 Apr 15;204(1):247–256. doi: 10.1042/bj2040247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  6. DiTullio N. W., Berkoff C. E., Blank B., Kostos V., Stack E. J., Saunders H. L. 3-mercaptopicolinic acid, an inhibitor of gluconeogenesis. Biochem J. 1974 Mar;138(3):387–394. doi: 10.1042/bj1380387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Exton J. H. Mechanisms involved in effects of catecholamines on liver carbohydrate metabolism. Biochem Pharmacol. 1979 Aug 1;28(15):2237–2240. doi: 10.1016/0006-2952(79)90684-1. [DOI] [PubMed] [Google Scholar]
  8. Garrison J. C., Borland M. K. Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. J Biol Chem. 1979 Feb 25;254(4):1129–1133. [PubMed] [Google Scholar]
  9. Garrison J. C., Haynes R. C., Jr The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J Biol Chem. 1975 Apr 25;250(8):2769–2777. [PubMed] [Google Scholar]
  10. Goodman M. N. Effect of 3-mercaptopicolinic acid on gluconeogenesis and gluconeogenic metabolite concentrations in the isolated perfused rat liver. Biochem J. 1975 Jul;150(1):137–139. doi: 10.1042/bj1500137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenbaum A. L., Gumaa K. A., McLean P. The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch Biochem Biophys. 1971 Apr;143(2):617–663. doi: 10.1016/0003-9861(71)90247-5. [DOI] [PubMed] [Google Scholar]
  12. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  13. Hems D. A., McCormack J. G., Denton R. M. Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin. Biochem J. 1978 Nov 15;176(2):627–629. doi: 10.1042/bj1760627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCormack J. G., Denton R. M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J. 1979 Jun 15;180(3):533–544. doi: 10.1042/bj1800533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siess E. A., Kientsch-Engel R. I., Wieland O. H. Role of free oxaloacetate in ketogenesis. Derivation from the direct measurement of mitochondrial [3-hydroxybutyrate]/[acetoacetate] ratio in hepatocytes. Eur J Biochem. 1982 Jan;121(3):493–499. doi: 10.1111/j.1432-1033.1982.tb05814.x. [DOI] [PubMed] [Google Scholar]
  17. Sugden M. C., Ball A. J., Ilic V., Williamson D. H. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by vasopressin: effects of Ca2+. FEBS Lett. 1980 Jul 11;116(1):37–40. doi: 10.1016/0014-5793(80)80523-0. [DOI] [PubMed] [Google Scholar]
  18. Sugden M. C., Ball A. J., Williamson D. H. A second site of vasopressin action on [1-14C]oleate metabolism in isolated rat hepatocytes: increased formation of 14CO2. Biochem Soc Trans. 1980 Oct;8(5):591–592. doi: 10.1042/bst0080591. [DOI] [PubMed] [Google Scholar]
  19. Sugden M. C., Tordoff A. F., Ilic V., Williamson D. H. Alpha-adrenergic stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes. FEBS Lett. 1980 Oct 20;120(1):80–84. doi: 10.1016/0014-5793(80)81051-9. [DOI] [PubMed] [Google Scholar]
  20. Titheradge M. A., Haynes R. C., Jr The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. Arch Biochem Biophys. 1980 Apr 15;201(1):44–55. doi: 10.1016/0003-9861(80)90485-3. [DOI] [PubMed] [Google Scholar]
  21. Titheradge M. A., Stringer J. L., Haynes R. C., Jr The stimulation of the mitochondrial uncoupler-dependent ATPase in isolated hepatocytes by catecholamines and glucagon and its relationship to gluconeogenesis. Eur J Biochem. 1979 Dec;102(1):117–124. doi: 10.1111/j.1432-1033.1979.tb06271.x. [DOI] [PubMed] [Google Scholar]
  22. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whitelaw E., Williamson D. H. Effects of lactation of ketogenesis from oleate or butyrate in rat hepatocytes. Biochem J. 1977 Jun 15;164(3):521–528. doi: 10.1042/bj1640521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williamson D. H., Ilic V., Tordoff A. F., Ellington E. V. Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats. Biochem J. 1980 Feb 15;186(2):621–624. doi: 10.1042/bj1860621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williamson J. R., Cooper R. H., Hoek J. B. Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta. 1981 Dec 30;639(3-4):243–295. doi: 10.1016/0304-4173(81)90012-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES