Abstract
In hepatocytes isolated from 48 h-old starved of suckling newborn pigs or from 15-day-old starved piglets, the rate of ketogenesis from oleate or from octanoate is very low. This is not due to an inappropriate fatty acid uptake by the isolated liver cells, but results from a limited capacity for fatty acid oxidation. Some 80-95% of oleate taken up is converted into esterified fats, whatever the age or the nutritional conditions. Three lines of indirect evidences suggest that fatty acid oxidation is not controlled primarily by malonyl-CoA concentration in newborn pig liver. Firstly, the addition of glucagon does not increase fatty acid oxidation or ketogenesis. Secondly, the rate of lipogenesis is very low in isolated hepatocytes from newborn pigs. Thirdly, the rates of oxidation and ketogenesis from octanoate are also decreased in isolated hepatocytes from newborn and young piglets. The huge rate of esterification of fatty acids in the liver of the newborn pigs probably represents a species-specific difference in intrahepatic fatty acid metabolism.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augenfeld J., Fritz I. B. Carnitine palmitolyltransferase activity and fatty acid oxidation by livers from fetal and neonatal rats. Can J Biochem. 1970 Mar;48(3):288–294. doi: 10.1139/o70-050. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieber L. L., Markwell M. A., Blair M., Helmrath T. A. Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs. Biochim Biophys Acta. 1973 Nov 29;326(2):145–154. doi: 10.1016/0005-2760(73)90240-3. [DOI] [PubMed] [Google Scholar]
- Bischoff M. B., Richter W. R., Stein R. J. Ultrastructural changes in pig hepatocytes during the transitional period from late foetal to early neonatal life. J Cell Sci. 1969 Mar;4(2):381–395. doi: 10.1242/jcs.4.2.381. [DOI] [PubMed] [Google Scholar]
- Christiansen R. Z., Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta. 1976 Nov 2;448(4):562–577. doi: 10.1016/0005-2736(76)90110-3. [DOI] [PubMed] [Google Scholar]
- El Manoubi L., Ferré P., Girard J. Development of ketogenesis in the newborn rabbit: temporal studies in isolated hepatocytes. Biochem Soc Trans. 1981 Feb;9(1):53–54. doi: 10.1042/bst0090053. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Ferré P., Satabin P., El Manoubi L., Callikan S., Girard J. Relationship between ketogenesis and gluconeogenesis in isolated hepatocytes from newborn rats. Biochem J. 1981 Nov 15;200(2):429–433. doi: 10.1042/bj2000429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentz J., Bengtsson G., Hakkarainen J., Hellström R., Persson B. Metabolic effects of starvation during neonatal period in the piglet. Am J Physiol. 1970 Mar;218(3):662–668. doi: 10.1152/ajplegacy.1970.218.3.662. [DOI] [PubMed] [Google Scholar]
- Harris R. A. Studies on the inhibition of hepatic lipogenesis by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate. Arch Biochem Biophys. 1975 Jul;169(1):168–180. doi: 10.1016/0003-9861(75)90330-6. [DOI] [PubMed] [Google Scholar]
- Helmrath T. A., Bieber L. L. Development of gluconeogenesis in neonatal pig liver. Am J Physiol. 1974 Dec;227(6):1306–1313. doi: 10.1152/ajplegacy.1974.227.6.1306. [DOI] [PubMed] [Google Scholar]
- MANNERS M. J., MCCREA M. R. CHANGES IN THE CHEMICAL COMPOSITION OF SOW-REARED PIGLETS DURING THE 1ST MONTH OF LIFE. Br J Nutr. 1963;17:495–513. doi: 10.1079/bjn19630053. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. The metabolism of (minus)-octanoylcarnitine in perfused livers from fed and fasted rats. Evidence for a possible regulatory role of carnitine acyltransferase in the control of ketogenesis. J Biol Chem. 1974 Dec 25;249(24):7984–7990. [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
- McGarry J. D., Takabayashi Y., Foster D. W. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem. 1978 Nov 25;253(22):8294–8300. [PubMed] [Google Scholar]
- Mersmann H. J., Goodman J., Houk J. M., Anderson S. Studies on the biochemistry of mitochondria and cell morphology in the neonatal swine hepatocyte. J Cell Biol. 1972 May;53(2):335–347. doi: 10.1083/jcb.53.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mersmann H. J., Houk J. M., Phinney G., Underwood M. C., Brown L. J. Lipogenesis by in vitro liver and adipose tissue preparations from neonatal swine. Am J Physiol. 1973 May;224(5):1123–1129. doi: 10.1152/ajplegacy.1973.224.5.1123. [DOI] [PubMed] [Google Scholar]
- Mersmann H. J., Phinney G. In vitro fatty acid oxidation in liver and heart from neonatal swine (Sus domesticus). Comp Biochem Physiol B. 1973 Jan 15;44(1):219–223. doi: 10.1016/0305-0491(73)90359-3. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Paschen U., Seitz H. J. Starvation-induced ketone body production in the conscious unrestrained miniature pig. J Nutr. 1982 Jul;112(7):1379–1386. doi: 10.1093/jn/112.7.1379. [DOI] [PubMed] [Google Scholar]
- O'Hea E. K., Leveille G. A. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J Nutr. 1969 Nov;99(3):338–344. doi: 10.1093/jn/99.3.338. [DOI] [PubMed] [Google Scholar]
- Pegorier J. P., Duee P. H., Girard J., Peret J. Development of gluconeogenesis in isolated hepatocytes from fasting or suckling newborn pigs. J Nutr. 1982 Jun;112(6):1038–1046. doi: 10.1093/jn/112.6.1038. [DOI] [PubMed] [Google Scholar]
- Richardson L. R. Albert Garland Hogan--a biographical sketch (1884-1961). J Nutr. 1969 Jan;97(1):3–7. doi: 10.1093/jn/97.1.1. [DOI] [PubMed] [Google Scholar]
- Robinson A. M., Williamson D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980 Jan;60(1):143–187. doi: 10.1152/physrev.1980.60.1.143. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitelaw E., Williamson D. H. Effects of lactation of ketogenesis from oleate or butyrate in rat hepatocytes. Biochem J. 1977 Jun 15;164(3):521–528. doi: 10.1042/bj1640521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Windmueller H. G., Spaeth A. E. Perfusion in situ with tritium oxide to measure hepatic lipogenesis and lipid secretion. Normal and orotic acid-fed rats. J Biol Chem. 1966 Jun 25;241(12):2891–2899. [PubMed] [Google Scholar]
- Wolfe R. G., Maxwell C. V., Nelson E. C. Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J Nutr. 1978 Oct;108(10):1621–1634. doi: 10.1093/jn/108.10.1621. [DOI] [PubMed] [Google Scholar]