Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Apr 15;212(1):167–171. doi: 10.1042/bj2120167

The interaction between lipid peroxidation and prostaglandin synthesis in rabbit kidney-medulla slices.

Y Fujimoto, H Tanioka, I Keshi, T Fujita
PMCID: PMC1152025  PMID: 6575779

Abstract

Lipid peroxidation induced by ascorbic acid and Fe2+ was inhibited by mepacrine (phospholipase A2 inhibitor) and aspirin (prostaglandin cyclo-oxygenase inhibitor) in rabbit kidney-medulla slices. Moreover, ascorbic acid and Fe2+ potentiated the inhibitory effect on prostaglandin E2 formation by mepacrine, but they had no influence on prostaglandin E2 production decreased by aspirin. Lipid peroxidation induced by ascorbic acid and Fe2+ appears to be affecting the activity of prostaglandin endoperoxide synthase. These results suggest that lipid peroxidation is connected closely with the prostaglandin-generating system, and it has the potential to modulate the turnover of arachidonic acid and prostaglandin synthesis.

Full text

PDF
167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bojesen I. Quantitative and qualitative analyses of isolated lipid droplets from interstitial cells in renal papillae from various species. Lipids. 1974 Nov;9(11):835–843. doi: 10.1007/BF02532606. [DOI] [PubMed] [Google Scholar]
  2. Chio K. S., Tappel A. L. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry. 1969 Jul;8(7):2827–2832. doi: 10.1021/bi00835a020. [DOI] [PubMed] [Google Scholar]
  3. Comai K., Farber S. J., Paulsrud J. R. Analyses of renal medullary lipid droplets from normal, hydronephrotic, and indomethacin treated rabbits. Lipids. 1975 Sep;10(9):555–561. doi: 10.1007/BF02532360. [DOI] [PubMed] [Google Scholar]
  4. Danon A., Heimberg M., Oates J. A. Enrichment of rat tissue lipids with fatty acids that are prostaglandin precursors. Biochim Biophys Acta. 1975 Jun 23;388(3):318–330. doi: 10.1016/0005-2760(75)90090-9. [DOI] [PubMed] [Google Scholar]
  5. Egan R. W., Paxton J., Kuehl F. A., Jr Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976 Dec 10;251(23):7329–7335. [PubMed] [Google Scholar]
  6. Erman A., Raz A. Effects of bivalent cations on prostaglandin biosynthesis and phospholipase A2 activation in rabbit kidney medulla slices. Biochem J. 1979 Sep 15;182(3):821–825. doi: 10.1042/bj1820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
  8. Fujimoto Y., Fujita T. Effects of lipid peroxidation on prostaglandin synthesis in rabbit kidney medulla slices. Biochim Biophys Acta. 1982 Jan 15;710(1):82–86. [PubMed] [Google Scholar]
  9. GREEN K., SAMUELSSON B. PROSTAGLANDINS AND RELATED FACTORS: XIX. THIN-LAYER CHROMATOGRAPHY OF PROSTAGLANDINS. J Lipid Res. 1964 Jan;5:117–120. [PubMed] [Google Scholar]
  10. Hirata F., Strittmatter W. J., Axelrod J. beta-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A. 1979 Jan;76(1):368–372. doi: 10.1073/pnas.76.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jouvenaz G. H., Nugteren D. H., Beerthuis R. K., van Dorp D. A. A sensitive method for the determination of prostaglandins by gas chromatography with electron-capture detection. Biochim Biophys Acta. 1970 Feb 10;202(1):231–234. doi: 10.1016/0005-2760(70)90246-8. [DOI] [PubMed] [Google Scholar]
  12. Miyamoto T., Ogino N., Yamamoto S., Hayaishi O. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J Biol Chem. 1976 May 10;251(9):2629–2636. [PubMed] [Google Scholar]
  13. Miyamoto T., Yamamoto S., Hayaishi O. Prostaglandin synthetase system--resolution into oxygenase and isomerase components. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3645–3648. doi: 10.1073/pnas.71.9.3645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagai J., Tanaka M., Hibasami H., Ikeda T. Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine. J Biochem. 1981 Apr;89(4):1143–1148. [PubMed] [Google Scholar]
  15. Robak J., Sobańska B. Relationship between lipid peroxidation and prostaglandin generation in rabbit tissues. Biochem Pharmacol. 1976 Oct 15;25(20):2233–2236. doi: 10.1016/0006-2952(76)90002-2. [DOI] [PubMed] [Google Scholar]
  16. Tappel A. L. Lipid peroxidation damage to cell components. Fed Proc. 1973 Aug;32(8):1870–1874. [PubMed] [Google Scholar]
  17. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  18. Vargaftig B. B. Carrageenan and thrombin trigger prostaglandin synthetase-independent aggregation of rabbit platelets: inhibition by phospholipase A2 inhibitors. J Pharm Pharmacol. 1977 Apr;29(4):222–228. doi: 10.1111/j.2042-7158.1977.tb11293.x. [DOI] [PubMed] [Google Scholar]
  19. Yasuda M., Fujita T., Higashio T., Okahara T., Abe Y., Yamamoto K. Effects of 4-pentenoic acid and furosemide on renal functions and renal uptake of individual free fatty acids. Pflugers Arch. 1980 May;385(2):111–116. doi: 10.1007/BF00588689. [DOI] [PubMed] [Google Scholar]
  20. Yorio T., Bentley P. J. Phospholipase A and the mechanism of action of aldosterone. Nature. 1978 Jan 5;271(5640):79–81. doi: 10.1038/271079a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES