Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Apr 15;212(1):231–239. doi: 10.1042/bj2120231

Metabolic effects of vasopressin infusion in the starved rat. Reversal of ketonaemia.

A M Rofe, D H Williamson
PMCID: PMC1152034  PMID: 6135420

Abstract

The effects of vasopressin on the metabolism of starved rats were investigated by using a constant-infusion regimen (50 pmol/kg body wt. per min, after an initial loading dose of 150 pmol/kg body wt.). 2. Blood ketone bodies decreased by 50% in 10 min, and this was accompanied by a 60% decrease in the plasma non-esterified fatty acids. 3. Blood glucose increased by 0.9 mM within 5 min and decreased to control values over the 40 min infusion. Small increases in lactate and pyruvate also occurred. 4. Plasma insulin was not increased by vasopressin infusion. 5. The net decrease in blood ketone bodies caused by vasopressin was similar when somatostatin was infused simultaneously (1 nmol/kg body wt. per min). 6. Hepatic ketone bodies were significantly decreased by vasopressin, as was the 3-hydroxybutyrate/acetoacetate ratio. A small increase in the hepatic concentration of several glycolytic intermediates also occurred. 7. Vasopressin did not decrease the ketonaemia produced by infusions of octanoate or long-chain triacylglycerol in rats that had been pre-treated with the anti-lipolytic agent 3,5-dimethylpyrazole. 8. In comparison with vasopressin, the infusion of adrenaline or glucose had much smaller effects in decreasing the ketonaemia of starvation, despite the 4-fold increase in plasma insulin, at 10 min, with the glucose infusion. 9. The primary metabolic effect of vasopressin in the starved rat appears to be that of decreased supply of non-esterified fatty acid to the liver. It is suggested that vasopressin has a direct anti-lipolytic effect in adipose tissue.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  2. Alberti K. G., Johnston D. G., Gill A., Barnes A. J., Orskov H. Hormonal regulation of ketone-body metabolism in man. Biochem Soc Symp. 1978;(43):163–182. [PubMed] [Google Scholar]
  3. Axelrod L., Lloyd-Jones P., Martin D. B. Correction of ketosis by suppression of lipolysis with 5-methylpyrazole-3-carboxylic acid in rats with established diabetic ketoacidosis. Diabetes. 1979 Jul;28(7):651–657. doi: 10.2337/diab.28.7.651. [DOI] [PubMed] [Google Scholar]
  4. Axelrod L., Slowman S. D., Lloyd-Jones P., Martin D. B. Persistence of ketosis despite suppression of lipolysis by 16,16-dimethylprostaglandin E2 in experimental diabetic ketoacidosis in rats. Diabetes. 1979 Oct;28(10):905–913. doi: 10.2337/diab.28.10.905. [DOI] [PubMed] [Google Scholar]
  5. Beisel W. R., Wannemacher R. W., Jr Gluconeogenesis, ureagenesis, and ketogenesis during sepsis. JPEN J Parenter Enteral Nutr. 1980 May-Jun;4(3):277–285. doi: 10.1177/014860718000400307. [DOI] [PubMed] [Google Scholar]
  6. Conyers R. A., Need A. G., Durbridge T., Harvey N. D., Potezny N., Rofe A. M. Cancer, ketosis and parenteral nutrition. Med J Aust. 1979 May 5;1(9):398–399. doi: 10.5694/j.1326-5377.1979.tb126984.x. [DOI] [PubMed] [Google Scholar]
  7. Errington M. L., Rocha e Silva M., Jr Vasopressin clearance and secretion during haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol. 1972 Dec;227(2):395–418. doi: 10.1113/jphysiol.1972.sp010039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GERRITSEN G. C., DULIN W. E. EFFECT OF A NEW HYPOGLYCEMIC AGENT, 3,5-DIMETHYLPYRAZOLE, ON CARBOHYDRATE AND FREE FATTY ACID METABOLISM. Diabetes. 1965 Aug;14:507–515. doi: 10.2337/diab.14.8.507. [DOI] [PubMed] [Google Scholar]
  9. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  10. Hales C. N., Luzio J. P., Siddle K. Hormonal control of adipose-tissue lipolysis. Biochem Soc Symp. 1978;(43):97–135. [PubMed] [Google Scholar]
  11. Hems D. A., McCormack J. G., Denton R. M. Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin. Biochem J. 1978 Nov 15;176(2):627–629. doi: 10.1042/bj1760627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hems D. A. Rapid hormonal control of hepatic catabolism in health and disease. Clin Sci (Lond) 1979 Mar;56(3):197–202. doi: 10.1042/cs0560197. [DOI] [PubMed] [Google Scholar]
  13. Hems D. A., Rodrigues L. M., Whitton P. D. Glycogen phosphorylase, glucose output and vasoconstriction in the perfused rat liver. Concentration-dependence of actions of adrenaline, vasopressin and angiotensin II. Biochem J. 1976 Nov 15;160(2):367–374. doi: 10.1042/bj1600367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hems D. A., Rodrigues L. M., Whitton P. D. Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem J. 1978 May 15;172(2):311–317. doi: 10.1042/bj1720311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hems D. A., Whitton P. D., Ma G. Y. Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim Biophys Acta. 1975 Nov 10;411(1):155–164. doi: 10.1016/0304-4165(75)90294-9. [DOI] [PubMed] [Google Scholar]
  16. Hems D. A., Whitton P. D. Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver. Biochem J. 1973 Nov;136(3):705–709. doi: 10.1042/bj1360705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hers H. G., Van Schaftingen E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J. 1982 Jul 15;206(1):1–12. doi: 10.1042/bj2060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hue L., Van Schaftingen E., Blackmore P. F. Stimulation of glycolysis and accumulation of a stimulator of phosphofructokinase in hepatocytes incubated with vasopressin. Biochem J. 1981 Mar 15;194(3):1023–1026. doi: 10.1042/bj1941023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Janáky T., László F. A., Sirokmán F., Morgat J. L. Biological half-life and organ distribution of [3H]8-arginine-vasopressin in the rat. J Endocrinol. 1982 Jun;93(3):295–303. doi: 10.1677/joe.0.0930295. [DOI] [PubMed] [Google Scholar]
  20. Kirk C. J., Michell R. H., Hems D. A. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin. Biochem J. 1981 Jan 15;194(1):155–165. doi: 10.1042/bj1940155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirk C. J., Rodrigues L. M., Hems D. A. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem J. 1979 Feb 15;178(2):493–496. doi: 10.1042/bj1780493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Little J. B., Klevay L. M., Radford E. P., Jr, McGandy R. B. Antidiuretic hormone inactivation by isolated perfused rat liver. Am J Physiol. 1966 Sep;211(3):786–792. doi: 10.1152/ajplegacy.1966.211.3.786. [DOI] [PubMed] [Google Scholar]
  23. McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
  24. Morton J. J., Garcia del Rio C., Hughes M. J. Effect of acute vasopressin infusion on blood pressure and plasma angiotensin II in normotensive and DOCA-salt hypertensive rats. Clin Sci (Lond) 1982 Feb;62(2):143–149. doi: 10.1042/cs0620143. [DOI] [PubMed] [Google Scholar]
  25. Moses A. M., Miller M., Streeten D. H. Pathophysiologic and pharmacologic alterations in the release and action of ADH. Metabolism. 1976 Jun;25(6):697–721. doi: 10.1016/0026-0495(76)90067-6. [DOI] [PubMed] [Google Scholar]
  26. Neufeld H. A., Pace J. A., White F. E. The effect of bacterial infections on ketone concentrations in rat liver and blood and on free fatty acid concentrations in rat blood. Metabolism. 1976 Aug;25(8):877–884. doi: 10.1016/0026-0495(76)90120-7. [DOI] [PubMed] [Google Scholar]
  27. Neufeld H. A., Pace J. G., Kaminski M. V., George D. T., Jahrling P. B., Wannemacher R. W., Jr, Beisel W. R. A probable endocrine basis for the depression of ketone bodies during infectious or inflammatory state in rats. Endocrinology. 1980 Aug;107(2):596–601. doi: 10.1210/endo-107-2-596. [DOI] [PubMed] [Google Scholar]
  28. Nosadini R., Datta H., Hodson A., Alberti K. G. A possible mechanism for the anti-ketogenic action of alanine in the rat. Biochem J. 1980 Aug 15;190(2):323–332. doi: 10.1042/bj1900323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  30. Rich A. J., Wright P. D. Ketosis and nitrogen excretion in undernourished surgical patients. JPEN J Parenter Enteral Nutr. 1979 Sep-Oct;3(5):350–354. doi: 10.1177/014860717900300506. [DOI] [PubMed] [Google Scholar]
  31. Schimmel R. J. Inhibition of lipolysis in hamster epididymal adipocytes by selective alpha-adrenergic agents. Evidence for cyclic AMP-dependent and independent mechanisms. Biochim Biophys Acta. 1979 Oct 4;587(2):217–226. [PubMed] [Google Scholar]
  32. Shimizu S., Inoue K., Tani Y., Yamada H. Enzymatic microdetermination of serum free fatty acids. Anal Biochem. 1979 Oct 1;98(2):341–345. doi: 10.1016/0003-2697(79)90151-9. [DOI] [PubMed] [Google Scholar]
  33. Siess E. A., Brocks D. G., Wieland O. H. Comparative studies on the influence of hormones on metabolite compartmentation in isolated liver cells during gluconeogenesis from lactate. Biochem Soc Trans. 1978;6(6):1139–1144. doi: 10.1042/bst0061139. [DOI] [PubMed] [Google Scholar]
  34. Smith R., Fuller D. J., Wedge J. H., Williamson D. H., Alberti K. G. Initial effect of injury on ketone bodies and other blood metabolites. Lancet. 1975 Jan 4;1(7897):1–3. doi: 10.1016/s0140-6736(75)92369-7. [DOI] [PubMed] [Google Scholar]
  35. Sugden M. C., Ball A. J., Ilic V., Williamson D. H. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by vasopressin: effects of Ca2+. FEBS Lett. 1980 Jul 11;116(1):37–40. doi: 10.1016/0014-5793(80)80523-0. [DOI] [PubMed] [Google Scholar]
  36. Sugden M. C., Watts D. I., Marshall C. E. Effects of adrenaline on ketogenesis from long- and medium-chain fatty acids in starved rats. Biochem J. 1982 Jun 15;204(3):749–756. doi: 10.1042/bj2040749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thompson E. E., Freychet P., Roth J. Monoido-oxytocin: demonstration of its biological activity and specific binding to isolated fat cells. Endocrinology. 1972 Nov;91(5):1199–1205. doi: 10.1210/endo-91-5-1199. [DOI] [PubMed] [Google Scholar]
  38. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  40. Whitton P. D., Rodrigues L. M., Hems D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J. 1978 Dec 15;176(3):893–898. doi: 10.1042/bj1760893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Williamson D. H., Ilic V., Tordoff A. F., Ellington E. V. Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats. Biochem J. 1980 Feb 15;186(2):621–624. doi: 10.1042/bj1860621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Williamson D. H., Lopes-Vieira O., Walker B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem J. 1967 Aug;104(2):497–502. doi: 10.1042/bj1040497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williamson D. H. Recent developments in ketone-body metabolism. Biochem Soc Trans. 1979 Dec;7(6):1313–1321. doi: 10.1042/bst0071313. [DOI] [PubMed] [Google Scholar]
  45. Wilson M. F., Brackett D. J., Hinshaw L. B., Tompkins P., Archer L. T., Benjamin B. A. Vasopressin release during sepsis and septic shock in baboons and dogs. Surg Gynecol Obstet. 1981 Dec;153(6):869–872. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES