Abstract
Dithiothreitol led to the activation and solubilization of the cyclic nucleotide phosphodiesterase activities associated with the smooth and various rough subfractions of rat liver endoplasmic reticulum. The activity in each of the subfractions exhibited somewhat different time courses, and sensitivities to dithiothreitol concentration, in respect of their solubilization and activation. Both activation and solubilization by dithiothreitol could be blocked by either thiol proteinase inhibitors or excess bovine serum albumin. Freeze-thaw solubilization was not blocked by the thiol proteinase inhibitor antipain and did not lead to the activation of the enzyme. After dithiothreitol-induced solubilization, all of the enzymes exhibited non-linear Lineweaver-Burk plots indicative of apparent negative co-operativity. In contrast, after freeze-thaw solubilization the enzyme in the smooth-endoplasmic-reticulum-plus-Golgi fraction still obeys Michaelis kinetics, as does the membrane-bound enzyme. It is possible to mimic the action of dithiothreitol in solubilizing and activating the enzyme by limited proteolysis with trypsin. Triton X-100 is highly efficient at solubilizing these enzymes, yet has little effect on their activities. Charged detergents exhibit highly selective effects on the enzymes as regards their solubilization and activity expressed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appleman M. M., Thompson W. J., Russell T. R. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1973;3:65–98. [PubMed] [Google Scholar]
- Cercek B., Houslay M. D. Submitochondrial localization and asymmetric disposition of two peripheral cyclic nucleotide phosphodiesterases. Biochem J. 1982 Oct 1;207(1):123–132. doi: 10.1042/bj2070123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cercek B., Wilson S. R., Houslay M. D. Heterogeneity of cyclic nucleotide phosphodiesterases in liver endoplasmic reticulum. Biochem J. 1983 Jul 1;213(1):89–97. doi: 10.1042/bj2130089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czech M. P. Molecular basis of insulin action. Annu Rev Biochem. 1977;46:359–384. doi: 10.1146/annurev.bi.46.070177.002043. [DOI] [PubMed] [Google Scholar]
- Donnelly T. E., Jr Reconsideration of the multiple cyclic nucleotide phosphodiesterases in bovine heart. Biochem Biophys Res Commun. 1978 Jun 14;82(3):964–970. doi: 10.1016/0006-291x(78)90877-x. [DOI] [PubMed] [Google Scholar]
- Erneux C., Boeynaems J. M., Dumont J. E. Theoretical analysis of the consequences of cyclic nucleotide phosphodiesterase negative co-operativity. Amplification and positive co-operativity of cyclic AMP accumulation. Biochem J. 1980 Oct 15;192(1):241–246. doi: 10.1042/bj1920241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houslay M. D., Marchmont R. J. The insulin-stimulated cyclic AMP phosphodiesterase binds to a single class of protein sites on the liver plasma membrane. Biochem J. 1981 Sep 15;198(3):703–706. doi: 10.1042/bj1980703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilien B., Stierlé A., Lugnier C., Stoclet J. C., Landry Y. Separation of three cyclic-nucleotide-phosphodiesterases from bovine aorta. Biochem Biophys Res Commun. 1978 Jul 28;83(2):486–492. doi: 10.1016/0006-291x(78)91016-1. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Krinks M. H. Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry. 1978 Jan 10;17(1):120–126. doi: 10.1021/bi00594a017. [DOI] [PubMed] [Google Scholar]
- Loten E. G., Assimacopoulos-Jeannet F. D., Exton J. H., Park C. R. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem. 1978 Feb 10;253(3):746–757. [PubMed] [Google Scholar]
- Loten E. G., Francis S. H., Corbin J. D. Proteolytic solubilization and modification of hormone-sensitive cyclic nucleotide phosphodiesterase. J Biol Chem. 1980 Aug 25;255(16):7838–7844. [PubMed] [Google Scholar]
- Makino H., Kanatsuka A., Osegawa M., Kumagai A. Effects of dithiothreitol on insulin-sensitive phosphodiesterase in rat fat cells. Biochim Biophys Acta. 1982 May 21;704(1):31–36. doi: 10.1016/0167-4838(82)90128-5. [DOI] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martins T. J., Mumby M. C., Beavo J. A. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem. 1982 Feb 25;257(4):1973–1979. [PubMed] [Google Scholar]
- Sharma R. K., Wang T. H., Wirch E., Wang J. H. Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem. 1980 Jun 25;255(12):5916–5923. [PubMed] [Google Scholar]
- Sogawa K., Takahashi K. Evidence for the presence of a serine proteinase(s) associated with the microsomal membranes of rat liver. J Biochem. 1978 Oct;84(4):763–770. doi: 10.1093/oxfordjournals.jbchem.a132187. [DOI] [PubMed] [Google Scholar]
- Strewler G. J., Manganiello V. C. Purification and characterization of phosphodiesterase activator from kidney. A lysosomal protease. J Biol Chem. 1979 Dec 10;254(23):11891–11898. [PubMed] [Google Scholar]
- Umezawa H. Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 1976;45:678–695. doi: 10.1016/s0076-6879(76)45058-9. [DOI] [PubMed] [Google Scholar]
- Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–143. [PubMed] [Google Scholar]
