Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 1;213(2):313–319. doi: 10.1042/bj2130313

Studies on the structure of a phosphoglycoprotein from the parasitic protozoan Trypanosoma cruzi.

M A Ferguson, A K Allen, D Snary
PMCID: PMC1152130  PMID: 6351838

Abstract

A glycoprotein (GP72) has been isolated from Trypanosoma cruzi and found to contain 41% protein, 49% carbohydrate and 10% phosphate. All phosphate was covalently attached to the carbohydrate which contained the following sugars: ribose, xylose, fucose, galactose, mannose, glucose and glucosamine. The carbohydrate side chains were linked to protein by fucose, xylose and N-acetylglucosamine; 50% of the total N-acetylglucosamine was involved in glycoprotein linkages. Two classes of carbohydrate side chains were detected. One class comprised 15% of the total carbohydrate and contained glucosamine, mannose and galactose; some of these chains were phosphorylated. The other class comprised 85% of the total carbohydrate and contained xylose, ribose, fucose, galactose, mannose, glucosamine and phosphate; these chains were antigenic and reacted with a monoclonal antibody with specificity for the whole glycoprotein.

Full text

PDF
313

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Desai N. N., Neuberger A. Purification of the glycoprotein lectin from the broad bean (Vicia faba) and a comparison of its properties with lectins of similar specificity. Biochem J. 1976 Apr 1;155(1):127–135. doi: 10.1042/bj1550127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen A. K., Neuberger A. The quantitation of glucosamine and galactosamine in glycoproteins after hydrolysis in p-toluenesulphonic acid. FEBS Lett. 1975 Dec 1;60(1):76–80. doi: 10.1016/0014-5793(75)80422-4. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
  5. Brener Z. Recent developments in the field of Chagas' disease. Bull World Health Organ. 1982;60(4):463–473. [PMC free article] [PubMed] [Google Scholar]
  6. Chambers R. E., Clamp J. R. An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochem J. 1971 Dec;125(4):1009–1018. doi: 10.1042/bj1251009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorin P. A., Previato J. O., Mendonça-Previato L., Travassos L. R. Structure of the D-mannan and D-arabino-D-galactan in Crithidia fasciculata: changes in proportion with age of culture. J Protozool. 1979 Aug;26(3):473–478. doi: 10.1111/j.1550-7408.1979.tb04656.x. [DOI] [PubMed] [Google Scholar]
  8. Green J. R., Northcote D. H. The structure and function of glycoproteins synthesized during slime-polysaccharide production by membranes of the root-cap cells of maize (Zea mays). Biochem J. 1978 Mar 15;170(3):599–608. doi: 10.1042/bj1700599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gustafson G. L., Milner L. A. Occurrence of N-acetylglucosamine-1-phosphate in proteinase I from Dictyostelium discoideum. J Biol Chem. 1980 Aug 10;255(15):7208–7210. [PubMed] [Google Scholar]
  10. Hayaishi O., Ueda K. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem. 1977;46:95–116. doi: 10.1146/annurev.bi.46.070177.000523. [DOI] [PubMed] [Google Scholar]
  11. Heaney-Kieras J., Rodén L., Chapman D. J. The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J. 1977 Jul 1;165(1):1–9. doi: 10.1042/bj1650001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holder A. A., Cross G. A. Glycopeptides from variant surface glycoproteins of Trypanosoma Brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Mol Biochem Parasitol. 1981 Feb;2(3-4):135–150. doi: 10.1016/0166-6851(81)90095-5. [DOI] [PubMed] [Google Scholar]
  13. Klinger M. M., Laine R. A., Steiner S. M. Characterization of novel amino acid fucosides. J Biol Chem. 1981 Aug 10;256(15):7932–7935. [PubMed] [Google Scholar]
  14. Lis H., Sharon N. Soybean agglutinin--a plant glycoprotein. Structure of the carboxydrate unit. J Biol Chem. 1978 May 25;253(10):3468–3476. [PubMed] [Google Scholar]
  15. Mega T., Ikenaka T. Methanolysis products of asparagine-linked N-acetylglucosamine and a new method for determination of N- and O-glycosidic N-acetylglucosamine in glycoproteins that contain asparagine-linked carbohydrates. Anal Biochem. 1982 Jan 1;119(1):17–24. doi: 10.1016/0003-2697(82)90659-5. [DOI] [PubMed] [Google Scholar]
  16. Ogata S., Lloyd K. O. Mild alkaline borohydride treatment of glycoproteins-a method for liberating both N- and O-linked carbohydrate chains. Anal Biochem. 1982 Jan 15;119(2):351–359. doi: 10.1016/0003-2697(82)90597-8. [DOI] [PubMed] [Google Scholar]
  17. Sher A., Snary D. Specific inhibition of the morphogenesis of Trypanosoma cruzi by a monoclonal antibody. Nature. 1982 Dec 16;300(5893):639–640. doi: 10.1038/300639a0. [DOI] [PubMed] [Google Scholar]
  18. Snary D. Cell surface glycoproteins of Trypanosoma cruzi: protective immunity in mice and antibody levels in human chagasic sera. Trans R Soc Trop Med Hyg. 1983;77(1):126–129. doi: 10.1016/0035-9203(83)90037-8. [DOI] [PubMed] [Google Scholar]
  19. Varki A., Kornfeld S. Identification of a rat liver alpha-N-acetylglucosaminyl phosphodiesterase capable of removing "blocking" alpha-N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J Biol Chem. 1980 Sep 25;255(18):8398–8401. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES