Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jul 15;214(1):77–82. doi: 10.1042/bj2140077

Inositol phospholipid metabolism and myoblast fusion.

M J Wakelam
PMCID: PMC1152212  PMID: 6412696

Abstract

The fusion of chick embryonic myoblasts has been studied in tissue culture. Myoblasts are maintained at 0.1 microM-Ca2+ for 50 h. During this time they achieve fusion competence. Fusion is initiated by raising the medium Ca2+ concentration to 1.4 mM. A rapid breakdown of the polyphosphoinositides was detected within 3 min of Ca2+ addition. Rapid synthesis of phosphatidic acid was also detected at this time. Breakdown of phosphatidylinositol and synthesis of 1,2-diacylglycerol were also detected. Other phospholipids were unaffected. Sr2+ could replace Ca2+ in this process but Mg2+ could not and also inhibited the Ca2+ effect. The Ca2+-ionophore A23187 stimulated further apparent polyphosphoinositide breakdown in the presence of Ca2+. 6. The results are discussed with respect to myoblast fusion.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan D., Low M. G., Finean J. B., Michell R. H. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):309–316. doi: 10.1016/0005-2736(75)90116-9. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Michell R. H. Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions. Biochem J. 1977 Sep 15;166(3):495–499. doi: 10.1042/bj1660495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allan D., Thomas P. The effects of Ca2+ and Sr2+ on Ca2+-sensitive biochemical changes in human erythrocytes and their membranes. Biochem J. 1981 Sep 15;198(3):441–445. doi: 10.1042/bj1980441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. 5-Hydroxytryptamine stimulation of phosphatidylinositol hydrolysis and calcium signalling in the blowfly salivary gland. Cell Calcium. 1982 Oct;3(4-5):385–397. doi: 10.1016/0143-4160(82)90025-2. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Fain J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J. 1979 Jan 15;178(1):59–69. doi: 10.1042/bj1780059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David J. D., See W. M., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981 Mar;82(2):297–307. doi: 10.1016/0012-1606(81)90453-x. [DOI] [PubMed] [Google Scholar]
  8. Downes C. P., Michell R. H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J. 1981 Jul 15;198(1):133–140. doi: 10.1042/bj1980133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egawa K., Sacktor B., Takenawa T. Ca2+-dependent and Ca2+-independent degradation of phosphatidylinositol in rabbit vas deferens. Biochem J. 1981 Jan 15;194(1):129–136. doi: 10.1042/bj1940129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farese R. V., Sabir M. A., Larson R. E. Effects of dibutyryl cyclic AMP and theophylline on rat pancreatic phospholipids in vitro. Ca2+-sensitive decrease in phosphatidylinositol and cycloheximide-sensitive increase in phosphatidic acid. Biochim Biophys Acta. 1981 Sep 24;665(3):463–470. doi: 10.1016/0005-2760(81)90259-9. [DOI] [PubMed] [Google Scholar]
  11. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  12. Griffin H. D., Hawthorne J. N. Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-bisphosphate in guinea-pig synaptosomes. Biochem J. 1978 Nov 15;176(2):541–552. doi: 10.1042/bj1760541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grove R. I., Fitzpatrick D., Schimmel S. D. Effect of Ca++ on triphosphoinositide extraction in fusing myoblasts. Lipids. 1981 Sep;16(9):691–693. doi: 10.1007/BF02535065. [DOI] [PubMed] [Google Scholar]
  14. Hauser G., Eichberg J., Gonzalez-Sastre F. Regional distribution of polyphosphoinositides in rat brain. Biochim Biophys Acta. 1971 Oct 5;248(1):87–95. doi: 10.1016/0005-2760(71)90078-6. [DOI] [PubMed] [Google Scholar]
  15. Lapetina E. G., Michell R. H. Stimulation by acetylcholine of phosphatidylinositol labelling. Subcellular distribution in rat cerebral-cortex slices. Biochem J. 1972 Mar;126(5):1141–1147. doi: 10.1042/bj1261141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  17. Michell R. H., Kirk C. J., Jones L. M., Downes C. P., Creba J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):123–138. doi: 10.1098/rstb.1981.0177. [DOI] [PubMed] [Google Scholar]
  18. Michell R. H., Kirk C. J. Studies of receptor-stimulated inositol lipid metabolism should focus upon measurements of inositol lipid breakdown. Biochem J. 1981 Jul 15;198(1):247–248. doi: 10.1042/bj1980247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  20. Schudt C., van der Bosch J., Pette D. Inhibition of muscle cell fusion in vitro by Mg2+ and K+ ions. FEBS Lett. 1973 Jun 1;32(2):296–298. doi: 10.1016/0014-5793(73)80857-9. [DOI] [PubMed] [Google Scholar]
  21. Shukla S. D., Coleman R., Finean J. B., Michell R. H. Are polyphosphoinositides associated with glycophorin in human erythrocyte membranes? Biochem J. 1979 May 1;179(2):441–444. doi: 10.1042/bj1790441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Skipski V. P., Barclay M., Reichman E. S., Good J. J. Separation of acidic phospholipids by one-dimensional thin-layer chromatography. Biochim Biophys Acta. 1967 Feb 14;137(1):80–89. doi: 10.1016/0005-2760(67)90010-0. [DOI] [PubMed] [Google Scholar]
  23. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sundler R., Düzgüneş N., Papahadjopoulos D. Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. Biochim Biophys Acta. 1981 Dec 21;649(3):751–758. doi: 10.1016/0005-2736(81)90180-2. [DOI] [PubMed] [Google Scholar]
  25. Sundler R., Papahadjopoulos D. Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity. Biochim Biophys Acta. 1981 Dec 21;649(3):743–750. doi: 10.1016/0005-2736(81)90179-6. [DOI] [PubMed] [Google Scholar]
  26. Wakelam M. J., Pette D. The breakdown of phosphatidylinositol in myoblasts stimulated to fuse by the addition of Ca2+. Biochem J. 1982 Mar 15;202(3):723–729. doi: 10.1042/bj2020723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Bosch J., Schudt C., Pette D. Quantitative investigation on Ca++-and pH-dependence of muscle cell fusion in vitro. Biochem Biophys Res Commun. 1972 Jul 25;48(2):326–332. doi: 10.1016/s0006-291x(72)80054-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES