Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jul 15;214(1):209–214. doi: 10.1042/bj2140209

Renal brush-border-membrane vesicles prepared from newborn rats by free-flow electrophoresis and their proline uptake.

M S Medow, K S Roth, K Ginkinger, S Segal
PMCID: PMC1152228  PMID: 6615465

Abstract

A method for the isolation of brush-border membranes from newborn-rat kidney, employing centrifugation and free-flow electrophoresis, is described. The composition and purity of the preparation was assessed by determination of enzyme activities specific for various cellular membranes. Free-flow electrophoresis resolves the newborn-rat renal membrane suspension into two populations of alkaline phosphatase-enriched brush-border membranes, designated 'A' and 'B', with the A peak also showing activity of (Na+ + K+)-stimulated ATPase, the basolateral membrane marker enzyme, whereas those of the B peak were enriched 11-fold in alkaline phosphatase and substantially decreased in (Na+ + K+)-stimulated ATPase activity. Membranes in the A peak showed a 7-fold enrichment of alkaline phosphatase, and (Na+ + K+)-stimulated ATPase activity similar to that of the original homogenate. Proline uptake employed to assess osmotic dependency revealed 7% binding of proline to the B vesicles and 31% to the A vesicles. This contrasts with 60% proline binding to vesicles prepared by centrifugation alone. Unlike vesicles from adult animals, proline uptake by B vesicles did not show an Na+-stimulated overshoot, but did exhibit an Na+-gradient enhanced rate of early proline entry. proline entry.

Full text

PDF
209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  2. Baerlocher K. E., Scriver C. R., Mohyuddin F. Ontogeny of iminoglycine transport in mammalian kidney. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1009–1016. doi: 10.1073/pnas.65.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baerlocher K. E., Scriver C. R., Mohyuddin F. The ontogeny of amino acid transport in rat kidney. II. Kinetics of uptake and effect of anoxia. Biochim Biophys Acta. 1971 Dec 3;249(2):364–372. doi: 10.1016/0005-2736(71)90115-5. [DOI] [PubMed] [Google Scholar]
  4. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldmann D. R., Roth K. S., Langfitt T. W., Jr, Segal S. L-proline transport by newborn rat kidney brush-border membrane vesicles. Biochem J. 1979 Jan 15;178(1):253–256. doi: 10.1042/bj1780253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldmann D. R., Schlesinger H., Segal S. Isolation and characterization of the brush border fraction from newborn rat renal proximal tubule cells. Biochim Biophys Acta. 1976 Jan 21;419(2):251–260. doi: 10.1016/0005-2736(76)90351-5. [DOI] [PubMed] [Google Scholar]
  7. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  8. Hannig K., Wirth H., Meyer B. H., Zeiller K. [Free-flow electrophoresis. I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method]. Hoppe Seylers Z Physiol Chem. 1975 Aug;356(8):1209–1223. doi: 10.1515/bchm2.1975.356.2.1209. [DOI] [PubMed] [Google Scholar]
  9. Heidrich H. G., Kinne R., Kinne-Saffran E., Hannig K. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J Cell Biol. 1972 Aug;54(2):232–245. doi: 10.1083/jcb.54.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KINSOLVING C. R., POST R. L., BEAVER D. L. SODIUM PLUS POTASSIUM TRANSPORT ADENOSINE TRIPHOSPHATASE ACTIVITY IN KIDNEY. J Cell Physiol. 1963 Aug;62:85–93. doi: 10.1002/jcp.1030620110. [DOI] [PubMed] [Google Scholar]
  12. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  13. McNamara P. D., Ozegović B., Pepe L. M., Segal S. Proline and glycine uptake by renal brushborder membrane vesicles. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4521–4525. doi: 10.1073/pnas.73.12.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reynolds R. A., Segal S. Regulatory characteristics of amino acid transport in newborn rat renal cortex cells. Biochim Biophys Acta. 1976 Mar 19;426(3):513–525. doi: 10.1016/0005-2736(76)90395-3. [DOI] [PubMed] [Google Scholar]
  16. Reynolds R. A., Wald H., McNamara P. D., Segal S. An improved method for isolation of basolateral membranes from rat kidney. Biochim Biophys Acta. 1980 Sep 2;601(1):92–100. doi: 10.1016/0005-2736(80)90516-7. [DOI] [PubMed] [Google Scholar]
  17. Reynolds R., Roth K. S., Hwang S. M., Segal S. On the development of glycine transport systems by rat renal cortex. Biochim Biophys Acta. 1978 Aug 4;511(2):274–284. doi: 10.1016/0005-2736(78)90320-6. [DOI] [PubMed] [Google Scholar]
  18. Roth K. S., Hwang S. M., London J. W., Segal S. Ontogeny of glycine transport in isolated rat renal tubules. Am J Physiol. 1977 Sep;233(3):F241–F246. doi: 10.1152/ajprenal.1977.233.3.F241. [DOI] [PubMed] [Google Scholar]
  19. Roth K. S., Medow M. S., Serabian M. A., London J. W. Transport of beta-hydroxy-beta-methyl-glutarate and beta-hydroxbutyrate by renal brushborder membrane vesicles. Pediatr Res. 1982 Aug;16(8):644–648. doi: 10.1203/00006450-198208000-00011. [DOI] [PubMed] [Google Scholar]
  20. Segal S., Rea C., Smith I. Separate transport systems for sugars and amino acids in developing rat kidney cortex. Proc Natl Acad Sci U S A. 1971 Feb;68(2):372–376. doi: 10.1073/pnas.68.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES