Abstract
Addition of adipocyte 100 000 g post-microsomal supernatant to assays of glycerol phosphate acyltransferase in isolated mitochondria or microsomal fractions decreased activity at lower concentrations of palmitoyl-CoA. At higher concentrations of palmitoyl-CoA, activation was observed on addition of post-microsomal supernatant. The effect of post-microsomal supernatant to decrease activity at lower [palmitoyl-CoA] was abolished by heating or by trypsin treatment, and was also abolished by addition of N-ethylmaleimide to assays or by pretreatment of post-microsomal supernatant with N-ethylmaleimide. The stimulatory effect seen at higher [palmitoyl-CoA] was not sensitive to heat or trypsin treatment. The effect of post-microsomal supernatant at lower [palmitoyl-CoA] cannot be attributed to palmitoyl-CoA hydrolase activity. It was found that brief treatment of adipocyte mitochondria with low concentrations of trypsin was an effective way to remove contaminating microsomal glycerol phosphate acyltransferase activity. Adipocyte post-microsomal supernatant was more effective than an equivalent quantity of liver post-microsomal supernatant protein in decreasing adipocyte microsomal glycerol phosphate acyltransferase activity. The effects of the supernatants from both tissues were decreased by flavaspidic acid. Semi-purified Z-protein fraction from rat liver did not mimic the effect of adipocyte post-microsomal supernatant to decrease glycerol phosphate acyltransferase at lower [palmitoyl-CoA]. Post-microsomal supernatants obtained from noradrenaline-treated adipocytes were less effective than those from control cells in decreasing glycerol phosphate acyltransferase activity in microsomal fractions at lower [palmitoyl-CoA]. It is suggested that adipocyte cytosol may contain an acyl-CoA-binding protein or proteins differing from Z-protein in some respects. The physiological significance of the findings is briefly discussed.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bates E. J., Saggerson E. D. A study of the glycerol phosphate acyltransferase and dihydroxyacetone phosphate acyltransferase activities in rat liver mitochondrial and microsomal fractions. Relative distribution in parenchymal and non-parenchymal cells, effects of N-ethylmaleimide, palmitoyl-coenzyme A concentration, starvation, adrenalectomy and anti-insulin serum treatment. Biochem J. 1979 Sep 15;182(3):751–762. doi: 10.1042/bj1820751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billheimer J. T., Gaylor J. L. Cytosolic modulators of activities of microsomal enzyme of cholesterol biosynthesis. Role of a cytosolic protein with properties similar to Z-protein (fatty acid-binding protein). J Biol Chem. 1980 Sep 10;255(17):8128–8135. [PubMed] [Google Scholar]
- Burnett D. A., Lysenko N., Manning J. A., Ockner R. K. Utilization of long chain fatty acids by rat liver: studies of the role of fatty acid binding protein. Gastroenterology. 1979 Aug;77(2):241–249. [PubMed] [Google Scholar]
- Denton R. M., Halperin M. L. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and L-glycerol 3-phosphate. Biochem J. 1968 Nov;110(1):27–38. doi: 10.1042/bj1100027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fournier N., Geoffroy M., Deshusses J. Purification and characterization of a long chain, fatty-acid-binding protein supplying the mitochondrial beta-oxidative system in the heart. Biochim Biophys Acta. 1978 Apr 26;533(2):457–464. doi: 10.1016/0005-2795(78)90391-4. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P., Denton R. M. Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-Coenzyme A thioesters and citrate. Biochem J. 1974 Aug;142(2):365–377. doi: 10.1042/bj1420365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honnor R. C., Saggerson E. D. Altered lipolytic response to glucagon and adenosine deaminase in adipocytes from starved rats. Biochem J. 1980 Jun 15;188(3):757–761. doi: 10.1042/bj1880757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamdar S. C. Hepatic lipid metabolism: effect of spermine, albumin, and Z protein on microsomal lipid formation. Arch Biochem Biophys. 1979 Jun;195(1):81–94. doi: 10.1016/0003-9861(79)90329-1. [DOI] [PubMed] [Google Scholar]
- Ketterer B., Tipping E., Hackney J. F., Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties. Biochem J. 1976 Jun 1;155(3):511–521. doi: 10.1042/bj1550511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi A. J., Gatmaitan Z., Arias I. M. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest. 1969 Nov;48(11):2156–2167. doi: 10.1172/JCI106182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lunzer M. A., Manning J. A., Ockner R. K. Inhibition of rat liver acetyl coenzyme A carboxylase by long chain acyl coenzyme A and fatty acid. Modulation by fatty acid-binding protein. J Biol Chem. 1977 Aug 10;252(15):5483–5487. [PubMed] [Google Scholar]
- Mishkin S., Stein L., Fleischner G., Gatmaitan Z., Arias I. M. Z protein in hepatic uptake and esterification of long-chain fatty acids. Am J Physiol. 1975 Jun;228(6):1634–1640. doi: 10.1152/ajplegacy.1975.228.6.1634. [DOI] [PubMed] [Google Scholar]
- Mishkin S., Stein L., Gatmaitan Z., Arias I. M. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun. 1972 Jun 9;47(5):997–1003. doi: 10.1016/0006-291x(72)90931-x. [DOI] [PubMed] [Google Scholar]
- Mishkin S., Turcotte R. Stimulation of monoacylglycerophosphate formation by Z protein. Biochem Biophys Res Commun. 1974 Sep 9;60(1):376–381. doi: 10.1016/0006-291x(74)90215-0. [DOI] [PubMed] [Google Scholar]
- Mishkin S., Turcotte R. The binding of long chain fatty acid CoA to Z, a cytoplasmic protein present in liver and other tissues of the rat. Biochem Biophys Res Commun. 1974 Apr 8;57(3):918–926. doi: 10.1016/0006-291x(74)90633-0. [DOI] [PubMed] [Google Scholar]
- NORUM K. R. PALMITYL-COA:CARNITINE PALMITYLTRANSFERASE. PURIFICATION FROM CALF-LIVER MITOCHONDRIA AND SOME PROPERTIES OF THE ENZYME. Biochim Biophys Acta. 1964 Jul 8;89:95–108. [PubMed] [Google Scholar]
- NOSSLIN B., MORGAN E. H. THE EFFECT OF PHLOROGLUCINOL DERIVATIVES FROM MALE FERN ON DYE EXCRETION BY THE LIVER IN THE RABBIT AND RAT. J Lab Clin Med. 1965 Jun;65:891–902. [PubMed] [Google Scholar]
- Nimmo H. G. The location of glycerol phosphate acyltransferase and fatty acyl CoA synthase on the inner surface of the mitochondrial outer membrane. FEBS Lett. 1979 May 15;101(2):262–264. doi: 10.1016/0014-5793(79)81021-2. [DOI] [PubMed] [Google Scholar]
- O'Doherty P. J., Kuksis A. Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa. FEBS Lett. 1975 Dec 15;60(2):256–258. doi: 10.1016/0014-5793(75)80725-3. [DOI] [PubMed] [Google Scholar]
- Ockner R. K., Manning J. A. Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. J Clin Invest. 1976 Sep;58(3):632–641. doi: 10.1172/JCI108510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ockner R. K., Manning J. A., Kane J. P. Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J Biol Chem. 1982 Jul 10;257(13):7872–7878. [PubMed] [Google Scholar]
- Ockner R. K., Manning J. A., Poppenhausen R. B., Ho W. K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972 Jul 7;177(4043):56–58. doi: 10.1126/science.177.4043.56. [DOI] [PubMed] [Google Scholar]
- Rider M. H., Saggerson E. D. Regulation by noradrenaline of the mitochondrial and microsomal forms of glycerol phosphate acyltransferase in rat adipocytes. Biochem J. 1983 Jul 15;214(1):235–246. doi: 10.1042/bj2140235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roncari D. A., Mack E. Y. Purification of liver cytosolic proteins that stimulate triacylglycerol synthesis. Can J Biochem. 1981 Nov-Dec;59(11-12):944–950. doi: 10.1139/o81-133. [DOI] [PubMed] [Google Scholar]
- Rüstow B., Hodi J., Kunze D., Reichmann G., Egger E. Specific binding of saturated and unsaturated fatty acids on the 'Z'-protein of rat liver cytosol. FEBS Lett. 1978 Nov 15;95(2):225–228. doi: 10.1016/0014-5793(78)80999-5. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Greenbaum A. L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions. Biochem J. 1970 Sep;119(2):221–242. doi: 10.1042/bj1190221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saggerson E. D., Greenbaum A. L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Biochem J. 1970 Sep;119(2):193–219. doi: 10.1042/bj1190193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K., Odani S., Ono T. Primary structure of rat liver Z-protein. A low-Mr cytosol protein that binds sterols, fatty acids and other small molecules. FEBS Lett. 1982 Apr 5;140(1):63–66. doi: 10.1016/0014-5793(82)80521-8. [DOI] [PubMed] [Google Scholar]
- Trulzsch D., Arias I. M. Z protein: isolation and characterization of multiple forms in rat liver cytosol. Arch Biochem Biophys. 1981 Jul;209(2):433–440. doi: 10.1016/0003-9861(81)90300-3. [DOI] [PubMed] [Google Scholar]
- Wu-Rideout M. Y., Elson C., Shrago E. The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes. Biochem Biophys Res Commun. 1976 Aug 9;71(3):809–816. doi: 10.1016/0006-291x(76)90903-7. [DOI] [PubMed] [Google Scholar]
