Abstract
Erythrocytes from one species were labelled with fluorescein isothiocyanate and mixed with unlabelled erythrocytes from another species. Albumin polymers were added to generate rouleaux. The species of origin of erythrocytes in rouleaux was determined by fluorescence microscopy. Erythrocytes from different species segregated into independent rouleaux. However, fluorescent and non-fluorescent erythrocytes from one individual were mixed randomly in rouleaux. These results confirm, using a novel experimental approach, previous observations of Sewchand & Canham [(1976) Can. J. Physiol. Pharmacol. 54, 437-442]. Since rouleaugenic agents are not species-specific, under the 'agglomerin' hypothesis of rouleau formation they would be expected to form bridges between cells from different species. It follows that either the agglomerin hypothesis is incorrect, or additional species-specific surface components are involved in the aggregation of agglomerin-cross-bridged cells.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butcher E. C., Weissman I. L. Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects. J Immunol Methods. 1980;37(2):97–108. doi: 10.1016/0022-1759(80)90195-7. [DOI] [PubMed] [Google Scholar]
- Chien S., Jan K. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res. 1973 Mar;5(2):155–166. doi: 10.1016/0026-2862(73)90068-x. [DOI] [PubMed] [Google Scholar]
- Edwards P. A. Differential cell adhesion may result from nonspecific interactions between cell surface glycoproteins. Nature. 1978 Jan 19;271(5642):248–249. doi: 10.1038/271248a0. [DOI] [PubMed] [Google Scholar]
- Fisher D. The separation of cells and organelles by partitioning in two-polymer aqueous phases. Biochem J. 1981 Apr 15;196(1):1–10. doi: 10.1042/bj1960001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsdyke D. R., Palfree R. G., Takeda A. Formation of erythrocyte rouleaux in preheated normal serum: roles of albumin polymers and lysophosphatidylcholine. Can J Biochem. 1982 Jul;60(7):705–711. doi: 10.1139/o82-086. [DOI] [PubMed] [Google Scholar]
- Morris J. E. Steric exclusion of cells. A mechanism of glycosaminoglycan-induced cell aggregation. Exp Cell Res. 1979 Apr;120(1):141–153. doi: 10.1016/0014-4827(79)90545-7. [DOI] [PubMed] [Google Scholar]
- RUHENSTROTH-BAUER G. Mechanism and significance of erythrocyte sedimentation rate. Br Med J. 1961 Jun 24;1(5242):1804–1806. doi: 10.1136/bmj.1.5242.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowlands S., Sewchand L. S., Enns E. G. A quantum mechanical interaction of human erythrocytes. Can J Physiol Pharmacol. 1982 Jan;60(1):52–59. doi: 10.1139/y82-007. [DOI] [PubMed] [Google Scholar]
- Scherer R., Morarescu A., Ruhenstroth-Bauer G. Die spezifische Wirkung der Plasmaproteine bei der Blutkörperchensenkung. Eine Analyse der Korrelationskoeffizienten von Blutkörperchensenkungsgeschwindigkeit und den Konzentrationen von zwanzig Plasmaproteinen bei Gesunden und Kranken, insbesondere nach Herzinfarkt. Klin Wochenschr. 1978 Mar 15;53(16):265–273. [PubMed] [Google Scholar]
- Sewchand L., Canham P. B. Induced rouleaux formation in interspecies populations of red cells. Can J Physiol Pharmacol. 1976 Aug;54(4):437–442. doi: 10.1139/y76-062. [DOI] [PubMed] [Google Scholar]
- Takeda A., Palfree R. G., Forsdyke D. R. Role of serum in inhibition of cultured lymphocytes by lysophosphatidylcholine. Biochim Biophys Acta. 1982 Jan 15;710(1):87–98. doi: 10.1016/0005-2760(82)90194-1. [DOI] [PubMed] [Google Scholar]

