Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 15;214(2):317–323. doi: 10.1042/bj2140317

The control of adenosine concentration in polymorphonuclear leucocytes, cultured heart cells and isolated perfused heart from the rat.

A C Newby, C A Holmquist, J Illingworth, J D Pearson
PMCID: PMC1152250  PMID: 6604525

Abstract

Rat polymorphonuclear leucocytes or neonatal-rat heart cells in culture were treated with 2'-deoxycoformycin and 5-iodotubercidin at concentrations that inhibited adenosine deaminase (EC 3.5.4.4) and adenosine kinase (EC 2.7.1.20) inside the intact cells, and the rate of adenosine accumulation was determined. The basal rate of adenosine formation was 2% (polymorphonuclear leucocytes) or 9% (heart cells) of the maximal activity of adenosine kinase also measured in intact cells. Greatly increased rates of adenosine formation were observed during adenine nucleotide catabolism. This condition also led to a decrease in adenosine kinase activity. When isolated rat hearts were perfused with 5-iodotubercidin alone at a concentration which inhibited adenosine kinase, no increase in tissue or perfusate adenosine or inosine concentration was observed. However, perfusion with hypoxic buffer or infusion of adenosine into the coronary circulation at a rate (20 nmol/min) equivalent to 40% of the activity of adenosine kinase caused large increases in effluent perfusate adenosine and inosine concentrations. These data argue unanimously against the existence of a substrate cycle controlling adenosine concentration. They suggest instead that an increase in the rate of adenosine formation is the principal cause of elevations in adenosine concentration during ATP catabolism.

Full text

PDF
317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Newsholme E. A. Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J. 1978 Sep 15;174(3):965–977. doi: 10.1042/bj1740965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arch J. R., Newsholme E. A. The control of the metabolism and the hormonal role of adenosine. Essays Biochem. 1978;14:82–123. [PubMed] [Google Scholar]
  3. BERNE R. M. REGULATION OF CORONARY BLOOD FLOW. Physiol Rev. 1964 Jan;44:1–29. doi: 10.1152/physrev.1964.44.1.1. [DOI] [PubMed] [Google Scholar]
  4. Berne R. M. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980 Dec;47(6):807–813. doi: 10.1161/01.res.47.6.807. [DOI] [PubMed] [Google Scholar]
  5. Blondel B., Roijen I., Cheneval J. P. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia. 1971 Mar 15;27(3):356–358. doi: 10.1007/BF02138197. [DOI] [PubMed] [Google Scholar]
  6. Carson D. A., Kaye J., Seegmiller J. E. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5677–5681. doi: 10.1073/pnas.74.12.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res. 1963 Feb;29:451–465. doi: 10.1016/s0014-4827(63)80008-7. [DOI] [PubMed] [Google Scholar]
  8. Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem Pharmacol. 1977 Nov 1;26(21):1967–1972. doi: 10.1016/0006-2952(77)90003-x. [DOI] [PubMed] [Google Scholar]
  9. Illingworth J. A., Ford W. C., Kobayashi K., Williamson J. R. Regulation of myocardial energy metabolism. Recent Adv Stud Cardiac Struct Metab. 1975;8:271–290. [PubMed] [Google Scholar]
  10. Illingworth J. A., Mullings R. An improved working rat heart preparation and a new apparatus for pyruvate dehydrogenase determinations. Biochem Soc Trans. 1976;4(2):277–279. doi: 10.1042/bst0040277. [DOI] [PubMed] [Google Scholar]
  11. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  12. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  13. Lomax C. A., Henderson J. F. Adenosine formation and metabolism during adenosine triphosphate catabolism in Ehrlich ascites tumor cells. Cancer Res. 1973 Nov;33(11):2825–2829. [PubMed] [Google Scholar]
  14. Luzio J. P., Newby A. C., Hales C. N. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane. Biochem J. 1976 Jan 15;154(1):11–21. doi: 10.1042/bj1540011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MORGAN H. E., RANDLE P. J., REGEN D. M. Regulation of glucose uptake by muscle. 3. The effects of insulin, anoxia, salicylate and 2:4-dinitrophenol on membrane transport and intracellular phosphorylation of glucose in the isolated rat heart. Biochem J. 1959 Dec;73:573–579. doi: 10.1042/bj0730573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller R. L., Adamczyk D. L., Miller W. H. Adenosine kinase from rabbit liver. I. Purification by affinity chromatography and properties. J Biol Chem. 1979 Apr 10;254(7):2339–2345. [PubMed] [Google Scholar]
  17. Miller R. L., Adamczyk D. L., Miller W. H., Koszalka G. W., Rideout J. L., Beacham L. M., 3rd, Chao E. Y., Haggerty J. J., Krenitsky T. A., Elion G. B. Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem. 1979 Apr 10;254(7):2346–2352. [PubMed] [Google Scholar]
  18. Murray A. W. The biological significance of purine salvage. Annu Rev Biochem. 1971;40:811–826. doi: 10.1146/annurev.bi.40.070171.004115. [DOI] [PubMed] [Google Scholar]
  19. Newby A. C., Holmquist C. A. Adenosine production inside rat polymorphonuclear leucocytes. Biochem J. 1981 Nov 15;200(2):399–403. doi: 10.1042/bj2000399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newby A. C. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes. Biochem J. 1980 Mar 15;186(3):907–918. doi: 10.1042/bj1860907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newby A. C. The interaction of inhibitors with adenosine metabolising enzymes in intact isolated cells. Biochem Pharmacol. 1981 Sep 15;30(18):2611–2615. doi: 10.1016/0006-2952(81)90589-x. [DOI] [PubMed] [Google Scholar]
  22. Newsholme E. A., Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp. 1976;(41):61–109. [PubMed] [Google Scholar]
  23. Plagemann P. G., Wohlhueter R. M. 2-Deoxycoformycin inhibition of intracellular phosphorylation of adenosine in Novikoff rat hepatoma cells. Biochem Pharmacol. 1981 Mar 1;30(5):417–426. doi: 10.1016/0006-2952(81)90625-0. [DOI] [PubMed] [Google Scholar]
  24. Rogler-Brown T., Parks R. E., Jr Tight binding inhibitors--VIII. Studies of the interactions of 2'-deoxycoformycin and transport inhibitors with the erythrocytic nucleoside transport system. Biochem Pharmacol. 1980 Sep 15;29(18):2491–2497. doi: 10.1016/0006-2952(80)90354-8. [DOI] [PubMed] [Google Scholar]
  25. Seraydarian M. W., Sato E., Savageau M., Harary I. In vitro studies of beating heart cells in culture. XII. The utilization of ATP and phosphocreatine in oligomycin and 2-deoxyglucose inhibited cells. Biochim Biophys Acta. 1969 Jun 24;180(2):264–270. doi: 10.1016/0005-2728(69)90113-3. [DOI] [PubMed] [Google Scholar]
  26. Shimizu H., Creveling C. R., Daly J. Stimulated formation of adenosine 3',5'-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1033–1040. doi: 10.1073/pnas.65.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wolff J., Londos C., Cooper D. M. Adenosine receptors and the regulation of adenylate cyclase. Adv Cyclic Nucleotide Res. 1981;14:199–214. [PubMed] [Google Scholar]
  28. Worku Y., Newby A. C. The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochem J. 1983 Aug 15;214(2):325–330. doi: 10.1042/bj2140325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Jong J. W., Kalkman C. Myocardial adenosine kinase: activity and localization determined with rapid, radiometric assay. Biochim Biophys Acta. 1973 Sep 14;320(2):388–396. doi: 10.1016/0304-4165(73)90320-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES