Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 15;214(2):459–464. doi: 10.1042/bj2140459

Effects of glucose-containing peritoneal-dialysis solutions on rates of lipogenesis in vivo in the liver, brown and white adipose tissue of chronic uraemic rats.

R A Klim, D H Williamson
PMCID: PMC1152267  PMID: 6351852

Abstract

Chronic uraemic rats had decreased food intake, and this was accompanied by decreased weight of the epididymal fat-pads and interscapular brown adipose tissue. Normal rats whose food intake was restricted to an amount similar to that of the uraemic rats showed similar decreases in weight of the adipose-tissue depots. In addition, the food-restricted rats had decreased liver weight compared with normal or uraemic rats. The basal rate of lipogenesis was decreased in liver and epididymal fat-pads of food-restricted and uraemic rats and in interscapular brown adipose tissue of uraemic rats. Administration of a low-glucose-containing (1.36%) peritoneal-dialysis solution slightly increased lipogenesis in liver of uraemic rats, but had no significant effect in epididymal fat-pads. For brown fat, the rate of lipogenesis was increased in normal, food-restricted and uraemic groups, but the values for the last group were 4-5-fold lower than for the food-restricted or control groups. A high-glucose-containing (3.86%) peritoneal-dialysis solution gave similar rates of lipogenesis in liver, epididymal fat-pads and brown fat of all three groups, but for brown fat moderately uraemic rats showed a considerably lower rate of lipogenesis than did mildly uraemic rats. The basal plasma insulin concentration was lower in the food-restricted (50%) and uraemic (70%) groups than in the control group. The low-glucose peritoneal-dialysis solution increased plasma insulin to control values in the food-restricted rats, but had no significant effect on plasma insulin in the uraemic rats, despite a significant increase in blood glucose in this group. It is concluded that there is an impairment of the lipogenic response to intraperitoneal glucose loads in interscapular brown adipose tissue of uraemic rats, and that this is not due to the accompanying decrease in food intake. The hypoinsulinaemia may be an important factor. The possible relevance of this finding to the obesity observed in some uraemic patients treated by peritoneal dialysis with glucose-containing solutions is discussed.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R. D., Holliday M. A. Improved growth in growth retarded uremic rats with use of calorie supplementation. Clin Nephrol. 1977 Jul;8(1):298–303. [PubMed] [Google Scholar]
  2. Agius L., Williamson D. H. Lipogenesis in interscapular brown adipose tissue of virgin, pregnant and lactating rats. The effects of intragastric feeding. Biochem J. 1980 Aug 15;190(2):477–480. doi: 10.1042/bj1900477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agius L., Williamson D. H. The utilization of ketone bodies by the interscapular brown adipose tissue of the rat. Biochim Biophys Acta. 1981 Oct 23;666(1):127–132. doi: 10.1016/0005-2760(81)90098-9. [DOI] [PubMed] [Google Scholar]
  4. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  5. Bagdade Disorders of carbohydrate and lipid metabolism in uremia. Nephron. 1975;14(2):153–162. doi: 10.1159/000180445. [DOI] [PubMed] [Google Scholar]
  6. Bagdade J. D. Lipemia, a sequela of chronic renal failure and hemodialysis. Am J Clin Nutr. 1968 May;21(5):426–429. doi: 10.1093/ajcn/21.5.426. [DOI] [PubMed] [Google Scholar]
  7. Bagdade J. D. Uremic lipemia. An unrecognized abnormality in triglyceride production and removal. Arch Intern Med. 1970 Nov;126(5):875–881. doi: 10.1001/archinte.126.5.875. [DOI] [PubMed] [Google Scholar]
  8. Bagdade J. D., Yee E., Wilson D. E., Shafrir Hyperlipidemia in renal failure: studies of plasma lipoproteins, hepatic triglyceride production, and tissue lipoprotein lipase in a chronically uremic rat moedl. J Lab Clin Med. 1978 Jan;91(1):176–186. [PubMed] [Google Scholar]
  9. Bierman E. L. Abnormalities of carbohydrate and lipid metabolism in uremia. Arch Intern Med. 1970 Nov;126(5):790–792. [PubMed] [Google Scholar]
  10. Bilbrey G. L., Faloona G. R., White M. G., Knochel J. P. Hyperglucagonemia of renal failure. J Clin Invest. 1974 Mar;53(3):841–847. doi: 10.1172/JCI107624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chantler C., Lieberman E., Holliday M. A. A rat model for the study of growth failure in uremia. Pediatr Res. 1974 Feb;8(2):109–113. doi: 10.1203/00006450-197402000-00007. [DOI] [PubMed] [Google Scholar]
  12. De Santo N. G., Capodicasa G., Senatore R., Cicchetti T., Cirillo D., Damiano M., Torella R., Giugliano D., Improta L., Giordano C. Glucose utilization from dialysate in patients on continuous ambulatory peritoneal dialysis (CAPD). Int J Artif Organs. 1979 May;2(3):119–124. [PubMed] [Google Scholar]
  13. DeFronzo R. A., Alvestrand A. Glucose intolerance in uremia: site and mechanism. Am J Clin Nutr. 1980 Jul;33(7):1438–1445. doi: 10.1093/ajcn/33.7.1438. [DOI] [PubMed] [Google Scholar]
  14. DeFronzo R. A., Andres R., Edgar P., Walker W. G. Carbohydrate metabolism in uremia: a review. Medicine (Baltimore) 1973 Sep;52(5):469–481. doi: 10.1097/00005792-197309000-00009. [DOI] [PubMed] [Google Scholar]
  15. Diaz M., Kleinknecht C., Broyer M. Growth in experimental renal failure: role of calorie and amino acid intake. Kidney Int. 1975 Dec;8(6):349–354. doi: 10.1038/ki.1975.126. [DOI] [PubMed] [Google Scholar]
  16. Grodstein G. P., Blumenkrantz M. J., Kopple J. D., Moran J. K., Coburn J. W. Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int. 1981 Apr;19(4):564–567. doi: 10.1038/ki.1981.53. [DOI] [PubMed] [Google Scholar]
  17. Hampers C. L., Lowrie E. G., Soeldner J. S., Merrill J. P. The effect of uremia upon glucose metabolism. Arch Intern Med. 1970 Nov;126(5):870–874. [PubMed] [Google Scholar]
  18. Himms-Hagen J. Cellular thermogenesis. Annu Rev Physiol. 1976;38:315–351. doi: 10.1146/annurev.ph.38.030176.001531. [DOI] [PubMed] [Google Scholar]
  19. Jungas R. L. Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry. 1968 Oct;7(10):3708–3717. doi: 10.1021/bi00850a050. [DOI] [PubMed] [Google Scholar]
  20. Nicholls D. G. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1979 Jul 3;549(1):1–29. doi: 10.1016/0304-4173(79)90016-8. [DOI] [PubMed] [Google Scholar]
  21. Ormrod D., Miller T. Experimental uremia. Description of a model producing varying degrees of stable uremia. Nephron. 1980;26(5):249–254. doi: 10.1159/000181994. [DOI] [PubMed] [Google Scholar]
  22. Ransom J., Garfinkel A. S., Nikazy J., Schotz M. C., Kurokawa K. Metabolic studies of adipose tissue in acute uremia. Metabolism. 1981 Dec;30(12):1165–1169. doi: 10.1016/0026-0495(81)90036-6. [DOI] [PubMed] [Google Scholar]
  23. Roth D. A., Meade R. C., Barboriak J. J. Glucose, insulin, and free fatty acids in uremia. Diabetes. 1973 Feb;22(2):111–114. doi: 10.2337/diab.22.2.111. [DOI] [PubMed] [Google Scholar]
  24. Rothwell N. J., Stock M. J. Effect of chronic food restriction on energy balance, thermogenic capacity, and brown-adipose-tissue activity in the rat. Biosci Rep. 1982 Aug;2(8):543–549. doi: 10.1007/BF01314214. [DOI] [PubMed] [Google Scholar]
  25. Sherwin R. S., Bastl C., Finkelstein F. O., Fisher M., Black H., Hendler R., Felig P. Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J Clin Invest. 1976 Mar;57(3):722–731. doi: 10.1172/JCI108330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Soman V., Felig P. Glucagon and insulin binding to liver membranes in a partially nephrectomized uremic rat model. J Clin Invest. 1977 Jul;60(1):224–232. doi: 10.1172/JCI108759. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  27. Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sugden M. C., Watts D. L., Marshall C. E. Lipogenesis in response to an oral glucose load in fed and starved rats. Biosci Rep. 1981 Jun;1(6):469–476. doi: 10.1007/BF01121580. [DOI] [PubMed] [Google Scholar]
  29. Westervelt F. B. Insulin effect in uremia. J Lab Clin Med. 1969 Jul;74(1):79–84. [PubMed] [Google Scholar]
  30. Zammit V. A., Corstorphine C. G. Inhibition of acetyl-CoA carboxylase activity in isolated rat adipocytes incubated with glucagon. Interactions with the effects of insulin, adrenaline and adenosine deaminase. Biochem J. 1982 Dec 15;208(3):783–788. doi: 10.1042/bj2080783. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES