Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 15;214(2):479–487. doi: 10.1042/bj2140479

Effects of 4-hydroxynonenal on isolated hepatocytes. Studies on chemiluminescence response, alkane production and glutathione status.

E Cadenas, A Müller, R Brigelius, H Esterbauer, H Sies
PMCID: PMC1152270  PMID: 6688523

Abstract

The effect of 4-hydroxy-2,3-trans-nonenal, a diffusible product of lipid peroxidation, on isolated hepatocytes was evaluated with two non-invasive techniques measuring low-level chemiluminescence and alkane evolution. Oxygen-induced low-level chemiluminescence and ethane and n-pentane formation by hepatocytes is enhanced over 7-fold in the presence of 4-hydroxynonenal (2 mM). Glutathione-depleted hepatocytes show a higher increase than controls in both low-level chemiluminescence and alkane formation upon supplementation with 4-hydroxynonenal. The effects on both parameters are diminished by vitamin E pretreatment of rats and are absent under anaerobiosis. At variance with chemiluminescence and alkane formation, 4-hydroxynonenal does not elicit a concomitant increase in malonaldehyde or diene-conjugate formation. Addition of 4-hydroxynonenal to a suspension of hepatocytes causes a rapid loss of cellular glutathione in the form of a glutathione conjugate with the alkenal as observed with high-pressure liquid-chromatographic analysis. The reaction between glutathione and 4-hydroxynonenal proceeds also spontaneously in vitro at 1:1 stoichiometry. The cellular effects of 4-hydroxynonenal evaluated by low-level chemiluminescence and alkane formation are independent of the formation of a glutathione conjugate and seem to rely on the remaining not-bound 4-hydroxynonenal. The sensitivity of 4-hydroxynonenal-enhanced chemiluminescence and alkane formation to free-radical quenchers suggests the participation of a free-radical propagation process.

Full text

PDF
479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Bilzer M., Sies H. The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J Biol Chem. 1982 Apr 25;257(8):4248–4252. [PubMed] [Google Scholar]
  2. Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
  3. Benedetti A., Casini A. F., Ferrali M., Comporti M. Effects of diffusible products of peroxidation of rat liver microsomal lipids. Biochem J. 1979 May 15;180(2):303–312. doi: 10.1042/bj1800303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benedetti A., Casini A. F., Ferrali M. Red cell lysis coupled to the peroxidation of liver microsomal lipids. Compartmentalization of the hemolytic system. Res Commun Chem Pathol Pharmacol. 1977 Jul;17(3):519–528. [PubMed] [Google Scholar]
  5. Benedetti A., Esterbauer H., Ferrali M., Fulceri R., Comporti M. Evidence for aldehydes bound to liver microsomal protein following CCl4 or BrCCl3 poisoning. Biochim Biophys Acta. 1982 May 13;711(2):345–356. doi: 10.1016/0005-2760(82)90044-3. [DOI] [PubMed] [Google Scholar]
  6. Boveris A., Cadenas E., Chance B. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions. Fed Proc. 1981 Feb;40(2):195–198. [PubMed] [Google Scholar]
  7. Brigelius R., Lenzen R., Sies H. Increase in hepatic mixed disulphide and glutathione disulphide levels elicited by paraquat. Biochem Pharmacol. 1982 Apr 15;31(8):1637–1641. doi: 10.1016/0006-2952(82)90393-8. [DOI] [PubMed] [Google Scholar]
  8. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  9. Burk R. F., Lane J. M. Ethane production and liver necrosis in rats after administration of drugs and other chemicals. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):467–478. doi: 10.1016/0041-008x(79)90400-9. [DOI] [PubMed] [Google Scholar]
  10. Cadenas E., Brigelius R., Sies H. Paraquat-induced chemiluminescence of microsomal fractions. Biochem Pharmacol. 1983 Jan 1;32(1):147–150. doi: 10.1016/0006-2952(83)90667-6. [DOI] [PubMed] [Google Scholar]
  11. Cadenas E., Varsavsky A. I., Boveris A., Chance B. Oxygen- or organic hydroperoxide-induced chemiluminescence of brain and liver homogenates. Biochem J. 1981 Sep 15;198(3):645–654. doi: 10.1042/bj1980645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cadenas E., Wefers H., Sies H. Low-level chemiluminescence of isolated hepatocytes. Eur J Biochem. 1981 Oct;119(3):531–536. doi: 10.1111/j.1432-1033.1981.tb05640.x. [DOI] [PubMed] [Google Scholar]
  13. Dumelin E. E., Tappel A. L. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids. 1977 Nov;12(11):894–900. doi: 10.1007/BF02533308. [DOI] [PubMed] [Google Scholar]
  14. Esterbauer H., Zollner H., Scholz N. Reaction of glutathione with conjugated carbonyls. Z Naturforsch C. 1975 Jul-Aug;30(4):466–473. doi: 10.1515/znc-1975-7-808. [DOI] [PubMed] [Google Scholar]
  15. Kappus H., Muliawan H. Alkane formation during liver microsomal lipid peroxidation. Biochem Pharmacol. 1982 Feb 15;31(4):597–600. doi: 10.1016/0006-2952(82)90167-8. [DOI] [PubMed] [Google Scholar]
  16. Müller A., Graf P., Wendel A., Sies H. Ethane production by isolated perfused rat liver: a system to study metabolic effects related to lipid peroxidation. FEBS Lett. 1981 Apr 20;126(2):241–244. doi: 10.1016/0014-5793(81)80251-7. [DOI] [PubMed] [Google Scholar]
  17. Müller A., Sies H. Role of alcohol dehydrogenase activity and the acetaldehyde in ethanol- induced ethane and pentane production by isolated perfused rat liver. Biochem J. 1982 Jul 15;206(1):153–156. doi: 10.1042/bj2060153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reed D. J., Babson J. R., Beatty P. W., Brodie A. E., Ellis W. W., Potter D. W. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem. 1980 Jul 15;106(1):55–62. doi: 10.1016/0003-2697(80)90118-9. [DOI] [PubMed] [Google Scholar]
  19. Riely C. A., Cohen G., Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science. 1974 Jan 18;183(4121):208–210. doi: 10.1126/science.183.4121.208. [DOI] [PubMed] [Google Scholar]
  20. Roders M. K., Glende E. A., Recknagel R. O. NADPH-dependent microsomal lipid peroxidation and the problem of pathological action at a distance. New data on induction of red cell damage. Biochem Pharmacol. 1978 Feb 15;27(4):437–443. doi: 10.1016/0006-2952(78)90373-8. [DOI] [PubMed] [Google Scholar]
  21. Schauenstein E. Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res. 1967 Sep;8(5):417–428. [PubMed] [Google Scholar]
  22. Smith M. T., Thor H., Hartizell P., Orrenius S. The measurement of lipid peroxidation in isolated hepatocytes. Biochem Pharmacol. 1982 Jan 1;31(1):19–26. doi: 10.1016/0006-2952(82)90230-1. [DOI] [PubMed] [Google Scholar]
  23. Wendel A., Dumelin E. E. Hydrocarbon exhalation. Methods Enzymol. 1981;77:10–15. doi: 10.1016/s0076-6879(81)77004-6. [DOI] [PubMed] [Google Scholar]
  24. Wright J. R., Rumbaugh R. C., Colby H. D., Miles P. R. The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys. 1979 Feb;192(2):344–351. doi: 10.1016/0003-9861(79)90102-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES