Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 15;214(2):569–574. doi: 10.1042/bj2140569

Activation of protein kinase in the bovine corpus luteum by phospholipid and Ca2+.

J S Davis, M R Clark
PMCID: PMC1152282  PMID: 6311189

Abstract

A new species of protein kinase has been identified in cytosol preparations from bovine corpora lutea. Enzyme activity required the simultaneous presence of Ca2+ and phospholipid, and was also enhanced by glyceryl dioleate. Phosphatidylserine was the most effective phospholipid for stimulating histone phosphorylation. Other phospholipids capable of supporting enzymic activity were, in order of decreasing activity, phosphatidylinositol, phosphatidic acid, cardiolipin and phosphatidylglycerol. Several other phospholipids tested were ineffective. A cyclic AMP-dependent protein kinase was also present in the luteal cytosol. This enzyme activity was eliminated by protein kinase inhibitor without affecting the Ca2+- and phospholipid-stimulated activity. Lysine-rich histone (IIIS) was a much better substrate than type-IIA histone for Ca2+- and phospholipid-dependent phosphorylation. Ca2+ and phospholipid also enhanced phosphorylation of endogenous luteal cytosol protein. Calmodulin, alone or in the presence of Ca2+, was unable to increase phosphorylation. Trifluoperazine inhibited protein kinase activity stimulated by Ca2+ and phospholipid. These data suggest that a phospholipid-sensitive, Ca2+-dependent protein kinase may provide an important link between hormonally-induced changes in phospholipid metabolism and corpus-luteum function.

Full text

PDF
569

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Davis J. S., Farese R. V., Clark M. R. Gonadotropin-releasing hormone (GnRH) stimulates phosphatidylinositol metabolism in rat granulosa cells: mechanism of action of GnRH. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2049–2053. doi: 10.1073/pnas.80.7.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis J. S., Farese R. V., Marsh J. M. Stimulation of phospholipid labeling and steroidogenesis by luteinizing hormone in isolated bovine luteal cells. Endocrinology. 1981 Aug;109(2):469–475. doi: 10.1210/endo-109-2-469. [DOI] [PubMed] [Google Scholar]
  4. Endo T., Hidaka H. Phospholipids and regulation of protein kinase reaction. Arch Biochem Biophys. 1981 Oct 1;211(1):108–112. doi: 10.1016/0003-9861(81)90435-5. [DOI] [PubMed] [Google Scholar]
  5. Farese R. V. Phosphoinositide metabolism and hormone action. Endocr Rev. 1983 Winter;4(1):78–95. doi: 10.1210/edrv-4-1-78. [DOI] [PubMed] [Google Scholar]
  6. Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem. 1982 Feb;12(2):133–186. doi: 10.3109/10409238209108705. [DOI] [PubMed] [Google Scholar]
  7. Fourcans B., Jain M. K. Role of phospholipids in transport and enzymic reactions. Adv Lipid Res. 1974;12(0):147–226. doi: 10.1016/b978-0-12-024912-1.50011-9. [DOI] [PubMed] [Google Scholar]
  8. Higuchi T., Kaneko A., Abel J. H., Jr, Niswender G. D. Relationship between membrane potential and progesterone release in ovine corpora lutea. Endocrinology. 1976 Oct;99(4):1023–1032. doi: 10.1210/endo-99-4-1023. [DOI] [PubMed] [Google Scholar]
  9. Katoh N., Wrenn R. W., Wise B. C., Shoji M., Kuo J. F. Substrate proteins for calmodulin-sensitive and phospholipid-sensitive Ca2+-dependent protein kinases in heart, and inhibition of their phosphorylation by palmitoylcarnitine. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4813–4817. doi: 10.1073/pnas.78.8.4813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980 Mar 25;255(6):2273–2276. [PubMed] [Google Scholar]
  11. Kuo J. F., Andersson R. G., Wise B. C., Mackerlova L., Salomonsson I., Brackett N. L., Katoh N., Shoji M., Wrenn R. W. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7039–7043. doi: 10.1073/pnas.77.12.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuo J. F., Krueger B. K., Sanes J. R., Greengard P. Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3',5'-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta. 1970 Jul 15;212(1):79–91. doi: 10.1016/0005-2744(70)90180-4. [DOI] [PubMed] [Google Scholar]
  13. Maizels E. T., Jungmann R. A. Ca2+-dependent phosphorylation of rat ovary proteins. Biochem Biophys Res Commun. 1982 Jul 16;107(1):32–37. doi: 10.1016/0006-291x(82)91665-5. [DOI] [PubMed] [Google Scholar]
  14. Marsh J. M. The role of cyclic AMP in gonadal steroidogenesis. Biol Reprod. 1976 Feb;14(1):30–53. doi: 10.1095/biolreprod14.1.30. [DOI] [PubMed] [Google Scholar]
  15. Means A. R. Calmodulin: properties, intracellular localization, and multiple roles in cell regulation. Recent Prog Horm Res. 1981;37:333–367. doi: 10.1016/b978-0-12-571137-1.50011-6. [DOI] [PubMed] [Google Scholar]
  16. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  17. Minakuchi R., Takai Y., Yu B., Nishizuka Y. Widespread occurrence of calcium-activated, phospholipid-dependent protein kinase in mammalian tissues. J Biochem. 1981 May;89(5):1651–1654. doi: 10.1093/oxfordjournals.jbchem.a133362. [DOI] [PubMed] [Google Scholar]
  18. Mori T., Takai Y., Minakuchi R., Yu B., Nishizuka Y. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1980 Sep 25;255(18):8378–8380. [PubMed] [Google Scholar]
  19. Naor Z., Yavin E. Gonadotropin-releasing hormone stimulates phospholipid labeling in cultured granulosa cells. Endocrinology. 1982 Nov;111(5):1615–1619. doi: 10.1210/endo-111-5-1615. [DOI] [PubMed] [Google Scholar]
  20. Nishizuka Y., Takai Y., Kishimoto A., Hashimoto E., Inoue M., Yamamoto M., Criss W. E., Kuroda Y. A role of calcium in the activation of a new protein kinase system. Adv Cyclic Nucleotide Res. 1978;9:209–220. [PubMed] [Google Scholar]
  21. Raziuddin S., Kibler R. F., Morrison D. C. Prevention of experimental allergic encephalomyelitis by bacterial lipopolysaccharides: inhibition of cell-mediated immunity. J Immunol. 1981 Jul;127(1):13–16. [PubMed] [Google Scholar]
  22. Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions. J Biol Chem. 1983 Feb 10;258(3):2010–2013. [PubMed] [Google Scholar]
  23. Sawyer H. R., Abel J. H., Jr, McClellan M. C., Schmitz M., Niswender G. D. Secretory granules and progesterone secretion by ovine corpora lutea in vitro. Endocrinology. 1979 Feb;104(2):476–486. doi: 10.1210/endo-104-2-476. [DOI] [PubMed] [Google Scholar]
  24. Schatzman R. C., Wise B. C., Kuo J. F. Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem Biophys Res Commun. 1981 Feb 12;98(3):669–676. doi: 10.1016/0006-291x(81)91166-9. [DOI] [PubMed] [Google Scholar]
  25. Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
  26. Takai Y., Kishimoto A., Kikkawa U., Mori T., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1218–1224. doi: 10.1016/0006-291x(79)91197-5. [DOI] [PubMed] [Google Scholar]
  27. Veldhuis J. D., Klase P. A. Calcium ions modulate hormonally stimulated progesterone production in isolated ovarian cells. Biochem J. 1982 Feb 15;202(2):381–386. doi: 10.1042/bj2020381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]
  29. Wise B. C., Raynor R. L., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. I. Purification and general properties. J Biol Chem. 1982 Jul 25;257(14):8481–8488. [PubMed] [Google Scholar]
  30. Wrenn R. W., Katoh N., Kuo J. F. Stimulation by phospholipid of calcium-dependent phosphorylation of endogenous proteins from mammalian tissues. Biochim Biophys Acta. 1981 Aug 17;676(2):266–269. doi: 10.1016/0304-4165(81)90195-1. [DOI] [PubMed] [Google Scholar]
  31. Wrenn R. W., Katoh N., Wise B. C., Kuo J. F. Stimulation by phosphatidylserine and calmodulin of calcium-dependent phosphorylation of endogenous proteins from cerebral cortex. J Biol Chem. 1980 Dec 25;255(24):12042–12046. [PubMed] [Google Scholar]
  32. Yamashita K., Field J. B. Cyclic AMP-stimulated protein kinase prepared from bovine thyroid glands. Metabolism. 1972 Feb;21(2):150–158. doi: 10.1016/0026-0495(72)90068-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES