Abstract
Measurement of rates of synthesis of skeletal-muscle proteins in adult rats shows that the faster overall rate of turnover in diaphragm and soleus muscles compared with several other, more glycolytic, muscles is also exhibited by the myofibrillar proteins, since the ratio of sarcoplasmic to myofibrillar protein synthesis is similar for all muscles. Further, throughout postnatal development, when the overall turnover rate falls with age, parallel changes occur for the myofibrillar proteins, as indicated by a constant ratio of sarcoplasmic to myofibrillar protein synthesis (2.06) in the steady state after overnight starvation. Only in the youngest (4 weeks old) rats is a slightly lower ratio observed (1.72). These results indicate that, when changes in the overall turnover rate of muscle proteins occur, the relative turnover of the two major protein fractions stays constant. However, measurements in the non-steady state during growth and after starvation for 4 days show that the relative synthesis rates of the two fractions change as a result of a disproportionate increase in myofibrillar protein synthesis during growth and decrease during starvation. Thus the synthesis rate of the slower-turning-over myofibrillar protein fraction is more sensitive to nutritional state than is that of the sarcoplasmic protein. It is suggested that such responses may help to maintain constant tissue composition during non-steady-state conditions of growth and atrophy.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
- BROUN G., DREYFUS J. C., KRUH J., SCHAPIRA G. Biosynthèse de méromyosines. C R Seances Soc Biol Fil. 1956 Sep 26;150(5):944–946. [PubMed] [Google Scholar]
- Bates P. C., Grimble G. K., Sparrow M. P., Millward D. J. Myofibrillar protein turnover. Synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states. Biochem J. 1983 Aug 15;214(2):593–605. doi: 10.1042/bj2140593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates P. C., Millward D. J. Changes in the relative rates of protein synthesis and breakdown during muscle growth and atrophy [proceedings]. Biochem Soc Trans. 1978;6(3):612–614. doi: 10.1042/bst0060612. [DOI] [PubMed] [Google Scholar]
- Bates P. C., Millward D. J. Characteristics of skeletal muscle growth and protein turnover in a fast-growing rat strain. Br J Nutr. 1981 Jul;46(1):7–13. doi: 10.1079/bjn19810004. [DOI] [PubMed] [Google Scholar]
- Etlinger J. D., Zak R., Fischman D. A., Rabinowitz M. Isolation of newly synthesised myosin filaments from skeletal muscle homogenates and myofibrils. Nature. 1975 May 15;255(5505):259–261. doi: 10.1038/255259a0. [DOI] [PubMed] [Google Scholar]
- Frayn K. N., Maycock P. F. Regulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles. Effects of starvation and scald injury. Biochem J. 1979 Nov 15;184(2):323–330. doi: 10.1042/bj1840323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garlick P. J., Marshall I. A technique for measuring brain protein synthesis. J Neurochem. 1972 Mar;19(3):577–583. doi: 10.1111/j.1471-4159.1972.tb01375.x. [DOI] [PubMed] [Google Scholar]
- Garlick P. J., Millward D. J., James W. P. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem J. 1973 Dec;136(4):935–945. doi: 10.1042/bj1360935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg A. L. Protein synthesis in tonic and phasic skeletal muscles. Nature. 1967 Dec 23;216(5121):1219–1220. doi: 10.1038/2161219a0. [DOI] [PubMed] [Google Scholar]
- Gutmann E., Melichna J., Syrový I. Developmental changes in contraction time, myosin properties and fibre pattern of fast and slow skeletal muscles. Physiol Bohemoslov. 1974;23(1):19–27. [PubMed] [Google Scholar]
- HELANDER E. A. Influence of exercise and restricted activity on the protein composition of skeletal muscle. Biochem J. 1961 Mar;78:478–482. doi: 10.1042/bj0780478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halliday D., McKeran R. O. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-(alpha-15N)lysine. Clin Sci Mol Med. 1975 Dec;49(6):581–590. doi: 10.1042/cs0490581. [DOI] [PubMed] [Google Scholar]
- Laurent G. J., Sparrow M. P., Bates P. C., Millward D. J. Turnover of muscle protein in the fowl (Gallus domesticus). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl. Biochem J. 1978 Nov 15;176(2):393–401. doi: 10.1042/bj1760393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobley G. E., Lovie J. M. The synthesis of myosin, actin and the major protein fractions in rabbit skeletal muscle. Biochem J. 1979 Sep 15;182(3):867–874. doi: 10.1042/bj1820867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low R. B., Cerauskis P. W. Biosynthesis of muscle proteins in the fasted rat. J Nutr. 1977 Jul;107(7):1244–1254. doi: 10.1093/jn/107.7.1244. [DOI] [PubMed] [Google Scholar]
- Millward D. J., Bates P. C., Grimble G. K., Brown J. G., Nathan M., Rennie M. J. Quantitative importance of non-skeletal-muscle sources of N tau-methylhistidine in urine. Biochem J. 1980 Jul 15;190(1):225–228. doi: 10.1042/bj1900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millward D. J., Garlick P. J., Stewart R. J., Nnanyelugo D. O., Waterlow J. C. Skeletal-muscle growth and protein turnover. Biochem J. 1975 Aug;150(2):235–243. doi: 10.1042/bj1500235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millward D. J., Waterlow J. C. Effect of nutrition on protein turnover in skeletal muscle. Fed Proc. 1978 Jul;37(9):2283–2290. [PubMed] [Google Scholar]
- Rennie M. J., Edwards R. H., Halliday D., Matthews D. E., Wolman S. L., Millward D. J. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 1982 Dec;63(6):519–523. doi: 10.1042/cs0630519. [DOI] [PubMed] [Google Scholar]
- Short F. A. Protein synthesis by red and white muscle in vitro: effect of insulin and animal age. Am J Physiol. 1969 Jul;217(1):307–309. doi: 10.1152/ajplegacy.1969.217.1.307. [DOI] [PubMed] [Google Scholar]
- VELICK S. F. The metabolism of myosin, the meromyosins, actin and tropomyosin in the rabbit. Biochim Biophys Acta. 1956 Apr;20(1):228–236. doi: 10.1016/0006-3002(56)90281-5. [DOI] [PubMed] [Google Scholar]
- Young V. R., Munro H. N. Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978 Jul;37(9):2291–2300. [PubMed] [Google Scholar]
