Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Aug 15;214(2):653–655. doi: 10.1042/bj2140653

Identification of penicillin-binding protein 5a of Bacillus megaterium KM as a DD-carboxypeptidase.

J A Todd, D J Ellar
PMCID: PMC1152295  PMID: 6412705

Abstract

Measurement of the stabilities of DD-carboxypeptidase activity and the penicillin-binding activity of proteins 5 and 5a in membranes isolated from vegetative cells and stage-V forespores suggests that the unique sporulation-specific protein 5a may be a penicillin-sensitive DD-carboxypeptidase.

Full text

PDF
653

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett H. J. D-alanine carboxypeptidases of Bacillus stearothermophilus: solubilisation of particulate enzymes and mechanism of action of penicillin. Biochim Biophys Acta. 1973 Apr 28;304(2):332–352. doi: 10.1016/0304-4165(73)90252-3. [DOI] [PubMed] [Google Scholar]
  2. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  3. Chase H. A. Purification of four penicillin-binding proteins from Bacillus megaterium. J Gen Microbiol. 1980 Mar;117(1):211–224. doi: 10.1099/00221287-117-1-211. [DOI] [PubMed] [Google Scholar]
  4. Gould G. W., Dring G. J. Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature. 1975 Dec 4;258(5534):402–405. doi: 10.1038/258402a0. [DOI] [PubMed] [Google Scholar]
  5. Johnson K., Duez C., Frère J. M., Ghuysen J. M. Beta-lactamases (Actinomycetes species). Methods Enzymol. 1975;43:687–698. doi: 10.1016/0076-6879(75)43134-2. [DOI] [PubMed] [Google Scholar]
  6. Mauriño T., Nieto M., Perkins H. R. Membrane-bound DD-carboxypeptidases from Bacillus megaterium KM general properties, substrate specificity and sensitivity to penicillins, cephalosporins and peptide inhibitors of the activity at pH5. Biochem J. 1974 Nov;143(2):391–402. doi: 10.1042/bj1430391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shepherd S. T., Chase H. A., Reynolds P. E. The separation and properties of two penicillin-binding proteins from Salmonella typhimurium. Eur J Biochem. 1977 Sep;78(2):521–523. doi: 10.1111/j.1432-1033.1977.tb11765.x. [DOI] [PubMed] [Google Scholar]
  8. Sowell M. O., Buchanan C. E. Changes in penicillin-binding proteins during sporulation of Bacillus subtilis. J Bacteriol. 1983 Mar;153(3):1331–1337. doi: 10.1128/jb.153.3.1331-1337.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stewart G. S., Johnstone K., Hagelberg E., Ellar D. J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981 Jul 15;198(1):101–106. doi: 10.1042/bj1980101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Todd J. A., Ellar D. J. Alteration in the penicillin-binding profile of Bacillus megaterium during sporulation. Nature. 1982 Dec 16;300(5893):640–643. doi: 10.1038/300640a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES