Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Sep 15;214(3):845–850. doi: 10.1042/bj2140845

Glucagon resistance of hepatoma cells. Evidence for receptor and post-receptor defects.

M Fehlmann, M Crettaz, C R Kahn
PMCID: PMC1152322  PMID: 6138031

Abstract

Of all available liver cells in culture, only primary cultured hepatocytes are known to respond to glucagon in vitro. In the present study we investigated whether glucagon could stimulate amino acid transport and tyrosine aminotransferase (TAT;EC 2.6.1.5) activity (two well-characterized glucagon effects in the liver) in Fao cells, a highly differentiated rat hepatoma cell line. We found that glucagon had no effect on transport of alpha-aminoisobutyric acid (AIB; a non-metabolizable alanine analogue) nor on TAT activity, even though both activities could be fully induced by insulin [2-fold and 3-fold effects for AIB transport and TAT activity, respectively, after 6h; EC50 (median effective concentration) = 0.3 nM], or by dexamethasone (5-8-fold effects after 20 h; EC50 = 2 nM). Analysis of [125I]iodoglucagon binding revealed that Fao cells bind less than 1% as much glucagon as do hepatocytes, whereas insulin binding in Fao cells was 50% higher than in hepatocytes. The addition of dibutyryl cyclic AMP, which fully mimics the glucagon stimulation of both AIB transport and TAT activity in hepatocytes, induced TAT activity in Fao cells (a 2-fold effect at 0.1 mM-dibutyryl cyclic AMP) but had no effect on AIB transport. Cholera toxin stimulated TAT activity to the same extent as did dibutyryl cyclic AMP. These results indicate that the lack of glucagon responsiveness in cultured hepatoma cells results from both a receptor defect and, for amino acid transport, an additional post-receptor defect. Moreover, the results show that amino acid transport and TAT activity, which appeared to be co-induced by insulin or by dexamethasone in these cells, respond differently to cyclic AMP. This suggests that different mechanisms are involved in the induction of these activities by glucagon in liver.

Full text

PDF
845

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckner S. K., Reilly T., Martinez A., Blecher M. Alterations of cAMP metabolism and hormone responsiveness of cloned differentiated rat liver cells (RL-PR-C) upon spontaneous transformation. Exp Cell Res. 1980 Jul;128(1):151–158. doi: 10.1016/0014-4827(80)90398-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bucher M. L., Swaffield M. N. Regulation of hepatic regeneration in rats by synergistic action of insulin and glucagon. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1157–1160. doi: 10.1073/pnas.72.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byus C. V., Fletcher W. H. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics. J Cell Biol. 1982 Jun;93(3):727–734. doi: 10.1083/jcb.93.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canivet B., Fehlmann M., Freychet P. Glucocorticoid and catecholamine stimulation of amino acid transport in rat hepatocytes. Synthesis of a high-affinity component. Mol Cell Endocrinol. 1980 Sep;19(3):253–261. doi: 10.1016/0303-7207(80)90055-6. [DOI] [PubMed] [Google Scholar]
  6. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deschatrette J., Weiss M. C. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie. 1974;56(11-12):1603–1611. doi: 10.1016/s0300-9084(75)80286-0. [DOI] [PubMed] [Google Scholar]
  8. Ernest M. J., Chen C. L., Feigelson P. Induction of tyrosine aminotransferase synthesis in isolated liver cell suspensions. Absolute dependence of induction on glucocorticoids and glucagon or cyclic AMP. J Biol Chem. 1977 Oct 10;252(19):6783–6791. [PubMed] [Google Scholar]
  9. Exton J. H., Park C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3',5'-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem. 1968 Aug 25;243(16):4189–4196. [PubMed] [Google Scholar]
  10. Fehlmann M., Freychet P. Insulin and glucagon stimulation of (Na+-K+)-ATPase transport activity in isolated rat hepatocytes. J Biol Chem. 1981 Jul 25;256(14):7449–7453. [PubMed] [Google Scholar]
  11. Fehlmann M., Le Cam A., Freychet P. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem. 1979 Oct 25;254(20):10431–10437. [PubMed] [Google Scholar]
  12. Friedmann N., Dambach G. Antagonistic effect of insulin on glucagon-evoked hyperpolarization. A correlation between changes in membrane potential and gluconeogenesis. Biochim Biophys Acta. 1980 Feb 28;596(2):180–185. doi: 10.1016/0005-2736(80)90352-1. [DOI] [PubMed] [Google Scholar]
  13. Gurr J. A., Potter V. R. Independent induction of tyrosine aminotransferase activity by dexamethasone and glucagon in isolated rat liver parenchymal cells in suspension and in monolayer culture in serum-free media. Exp Cell Res. 1980 Mar;126(1):237–248. doi: 10.1016/0014-4827(80)90490-5. [DOI] [PubMed] [Google Scholar]
  14. Heaton J. H., Gelehrter T. D. Desensitization of hepatoma cells to insulin action. Evidence for a post-receptor mechanism. J Biol Chem. 1981 Dec 10;256(23):12257–12262. [PubMed] [Google Scholar]
  15. Heaton J. H., Gelehrter T. D. Regulation of insulin responsiveness in rat hepatoma cells. Biochem Biophys Res Commun. 1980 Feb 12;92(3):795–802. doi: 10.1016/0006-291x(80)90773-1. [DOI] [PubMed] [Google Scholar]
  16. Heaton J. H., Schilling E. E., Gelehrter T. D., Rechler M. M., Spencer C. J., Nissley S. P. Induction of tyrosine aminotransferase and amino acid transport in rat hepatoma cells by insulin and the insulin-like growth factor, multiplication-stimulating activity. Mediation by insulin and multiplication-stimulating activity receptors. Biochim Biophys Acta. 1980 Oct 1;632(2):192–203. doi: 10.1016/0304-4165(80)90077-x. [DOI] [PubMed] [Google Scholar]
  17. Hofmann C., Marsh J. W., Miller B., Steiner D. F. Cultured hepatoma cells as a model system for studying insulin processing and biologic responsiveness. Diabetes. 1980 Nov;29(11):865–874. doi: 10.2337/diab.29.11.865. [DOI] [PubMed] [Google Scholar]
  18. Iwamoto Y., Wong K. Y., Goldfine I. D. Insulin action in cultured HTC and H35 rat hepatoma cells: receptor binding and hormone sensitivity. Endocrinology. 1981 Jan;108(1):44–51. doi: 10.1210/endo-108-1-44. [DOI] [PubMed] [Google Scholar]
  19. Kasuga M., Karlsson F. A., Kahn C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science. 1982 Jan 8;215(4529):185–187. doi: 10.1126/science.7031900. [DOI] [PubMed] [Google Scholar]
  20. Kelley D. S., Becker J. E., Potter V. R. Effect of insulin, dexamethasone, and glucagon on the amino acid transport ability of four rat hepatoma cell lines and rat hepatocytes in culture. Cancer Res. 1978 Dec;38(12):4591–4600. [PubMed] [Google Scholar]
  21. Koch K. S., Leffert H. L. Growth control of differentiated adult rat hepatocytes in primary culture. Ann N Y Acad Sci. 1980;349:111–127. doi: 10.1111/j.1749-6632.1980.tb29520.x. [DOI] [PubMed] [Google Scholar]
  22. Koch K. S., Leffert H. L. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979 Sep;18(1):153–163. doi: 10.1016/0092-8674(79)90364-7. [DOI] [PubMed] [Google Scholar]
  23. Leffert H., Alexander N. M., Faloona G., Rubalcava B., Unger R. Specific endocrine and hormonal receptor changes associated with liver regeneration in adult rats. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4033–4036. doi: 10.1073/pnas.72.10.4033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mirel R. D., Morris H. P., DiAugustine R. P. Membrane receptor function and the loss of glucagon-stimulated adenylate cyclase activity in hepatomas. Endocrinology. 1978 Apr;102(4):1237–1246. doi: 10.1210/endo-102-4-1237. [DOI] [PubMed] [Google Scholar]
  25. Moore E. E., Weiss M. C. Selective isolation of stable and unstable dedifferentiated variants from a rat hepatoma cell line. J Cell Physiol. 1982 Apr;111(1):1–8. doi: 10.1002/jcp.1041110102. [DOI] [PubMed] [Google Scholar]
  26. Morin O., Fehlmann M., Freychet P. Binding and action of insulin and glucagon in monolayer cultures and fresh suspensions of rat hepatocytes. Mol Cell Endocrinol. 1982 Mar;25(3):339–352. doi: 10.1016/0303-7207(82)90089-2. [DOI] [PubMed] [Google Scholar]
  27. Noguchi T., Diesterhaft M., Granner D. Evidence for a dual effect of dibutyryl cyclic AMP on the synthesis of tyrosine aminotransferase in rat liver. J Biol Chem. 1982 Mar 10;257(5):2386–2390. [PubMed] [Google Scholar]
  28. Olson P. S., Thompson E. B., Granner D. K. Regulation of hepatoma tissue culture cell tyrosine aminotransferase messenger ribonucleic acid by dexamethasone. Biochemistry. 1980 Apr 15;19(8):1705–1711. doi: 10.1021/bi00549a029. [DOI] [PubMed] [Google Scholar]
  29. PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
  30. Pariza M. W., Butcher F. R., Kletzien R. F., Becker J. E., Potter V. R. Induction and decay of glucagon-induced amino acid transport in primary cultures of adult rat liver cells: paradoxical effects of cycloheximide and puromycin. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4511–4515. doi: 10.1073/pnas.73.12.4511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pezzino V., Vigneri R., Siperstein M. D., Goldfine I. D. Insulin and glucagon receptors in Morris hepatomas of varying growth rates. Cancer Res. 1979 May;39(5):1443–1446. [PubMed] [Google Scholar]
  32. Richman R. A., Claus T. H., Pilkis S. J., Friedman D. L. Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3589–3593. doi: 10.1073/pnas.73.10.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971 Mar 25;246(6):1861–1871. [PubMed] [Google Scholar]
  34. Ruiz-Bravo N., Ernest M. J. Induction of tyrosine aminotransferase mRNA by glucocorticoids and cAMP in fetal rat liver. Proc Natl Acad Sci U S A. 1982 Jan;79(2):365–368. doi: 10.1073/pnas.79.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scott D. F., Reynolds R. D., Pitot H. C., Potter V. R. Co-induction of the hepatic amino acid transport system and tyrosine aminotransferase by theophylline, glucagon and dibutyryl-cyclic AMP in vivo. Life Sci II. 1970 Oct 8;9(19):1133–1140. doi: 10.1016/0024-3205(70)90265-1. [DOI] [PubMed] [Google Scholar]
  36. Snoek G. T., Voorma H. O., van Wijk R. A post-transcriptional site of induction of tyrosine aminotransferase by dexamethasone in Reuber H35 hepatoma cells. FEBS Lett. 1981 Mar 23;125(2):266–270. doi: 10.1016/0014-5793(81)80735-1. [DOI] [PubMed] [Google Scholar]
  37. Sonne O., Berg T., Christoffersen T. Binding of 125I-labeled glucagon and glucagon-stimulated accumulation of adenosine 3':5'-monophosphate in isolated intact rat hepatocytes. Evidence for receptor heterogeneity. J Biol Chem. 1978 May 10;253(9):3203–3210. [PubMed] [Google Scholar]
  38. Thompson E. B., Tomkins G. M., Curran J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296–303. doi: 10.1073/pnas.56.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tomkins G. M., Gelehrter T. D., Granner D., Martin D., Jr, Samuels H. H., Thompson E. B. Control of specific gene expression in higher organisms. Expression of mammalian genes may be controlled by repressors acting on the translation of messenger RNA. Science. 1969 Dec 19;166(3912):1474–1480. doi: 10.1126/science.166.3912.1474. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES