Abstract
Quantitative data concerning the binding of 22000-mol.wt. human somatotropin and its 20000-mol.wt. variant are described using pregnant-rabbit liver and mammary-gland receptors. The purification and the complete chemical characterization of both human somatotropin and its 20000-mol.wt. variant is also presented. Contamination of the 20000-mol.wt.-variant preparation by 22000-mol.wt. hormone was found to be 0.5% by weight as measured in radioimmunoassay using monoclonal antibody. Labelling of human somatotropin and its 20000-mol.wt. variant using the Iodogen method is described as well as the characterization of the binding to pregnant-rabbit liver and mammary-gland receptor preparations. The maximum binding capacity of the 125I-labelled human somatotropin was between 50 and 60% to liver particulate receptor, whereas that of the 20000-mol.wt. variant was 30%. The specificity of binding of both forms to rabbit hepatic and mammary-gland receptor was found to be similar for both proteins in the same system. The affinity constants and capacity were respectively 0.7 X 10(10)M-1 and 815 fmol/mg of protein for human somatotropin and 0.6 X 10(10)M-1 and 1.250 fmol/mg of protein for the 20000-mol.wt. variant. These data suggest that both proteins behave as partial agonists to the receptors studied.
Full text
PDF![885](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/b4b2bd225f33/biochemj00343-0229.png)
![886](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/ede79f26b928/biochemj00343-0230.png)
![887](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/1984635cb74d/biochemj00343-0231.png)
![888](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/c431b9a4dad1/biochemj00343-0232.png)
![889](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/65aa81df5ea2/biochemj00343-0233.png)
![890](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/3a0b4f191e83/biochemj00343-0234.png)
![891](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/2cd1f2f0992a/biochemj00343-0235.png)
![892](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5482/1152328/9300a8c2a331/biochemj00343-0236.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brauer A. W., Margolies M. N., Haber E. The application of 0.1 M quadrol to the microsequence of proteins and the sequence of tryptic peptides. Biochemistry. 1975 Jul;14(13):3029–3035. doi: 10.1021/bi00684a036. [DOI] [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Cadman H. F., Wallis M. An investigation of sites that bind human somatotropin (growth hormone) in the liver of the pregnant rabbit. Biochem J. 1981 Sep 15;198(3):605–614. doi: 10.1042/bj1980605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Closset J., Hennen G. Porcine thyrotropin. Isolation and characterization of the hormone and its alpha and beta subunits. Eur J Biochem. 1974 Aug 1;46(3):595–602. doi: 10.1111/j.1432-1033.1974.tb03655.x. [DOI] [PubMed] [Google Scholar]
- Closset J., Maghuin-Rogister G., Hennen G., Strosberg A. D. Porcine follitropin. The amino-acid sequence of the beta subunit. Eur J Biochem. 1978 May;86(1):115–120. doi: 10.1111/j.1432-1033.1978.tb12290.x. [DOI] [PubMed] [Google Scholar]
- Djiane J., Durand P., Kelly P. A. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology. 1977 May;100(5):1348–1356. doi: 10.1210/endo-100-5-1348. [DOI] [PubMed] [Google Scholar]
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Frigeri L. G., Peterson S. M., Lewis U. J. The 20,000-dalton structural variant of human growth hormone: lack of some early insulin-like effects. Biochem Biophys Res Commun. 1979 Dec 14;91(3):778–782. doi: 10.1016/0006-291x(79)91947-8. [DOI] [PubMed] [Google Scholar]
- GREENSPAN F. S., LI C. H. Bioassay of hypophyseal growth hormone; the tibia test. Endocrinology. 1949 Nov;45(5):455-63, illust. doi: 10.1210/endo-45-5-455. [DOI] [PubMed] [Google Scholar]
- Kelly P. A., Posner B. I., Tsushima T., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: ontogenesis, effects of sex and pregnancy. Endocrinology. 1974 Aug;95(2):532–539. doi: 10.1210/endo-95-2-532. [DOI] [PubMed] [Google Scholar]
- Ketelslegers J. M., Knott G. D., Catt K. J. Kinetics of gonadotropin binding by receptors of the rat testis. Analysis by a nonlinear curve-fitting method. Biochemistry. 1975 Jul 15;14(14):3075–3083. doi: 10.1021/bi00685a006. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lewis U. J., Bonewald L. F., Lewis L. J. The 20,000-dalton variant of human growth hormone: location of the amino acid deletions. Biochem Biophys Res Commun. 1980 Jan 29;92(2):511–516. doi: 10.1016/0006-291x(80)90363-0. [DOI] [PubMed] [Google Scholar]
- Lewis U. J., Dunn J. T., Bonewald L. F., Seavey B. K., Vanderlaan W. P. A naturally occurring structural variant of human growth hormone. J Biol Chem. 1978 Apr 25;253(8):2679–2687. [PubMed] [Google Scholar]
- McConaghey P., Sledge C. B. Production of "sulphation factor" by the perfused liver. Nature. 1970 Mar 28;225(5239):1249–1250. doi: 10.1038/2251249b0. [DOI] [PubMed] [Google Scholar]
- Posner B. I., Kelly P. A., Shiu R. P., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology. 1974 Aug;95(2):521–531. doi: 10.1210/endo-95-2-521. [DOI] [PubMed] [Google Scholar]
- Shiu R. P., Friesen H. G. Solubilization and purification of a prolactin receptor from the rabbit mammary gland. J Biol Chem. 1974 Dec 25;249(24):7902–7911. [PubMed] [Google Scholar]
- Sigel M. B., Thorpe N. A., Kobrin M. S., Lewis U. J., Vanderlaan W. P. Binding characteristics of a biologically active variant of human growth hormone (20K) to growth hormone and lactogen receptors. Endocrinology. 1981 Apr;108(4):1600–1603. doi: 10.1210/endo-108-4-1600. [DOI] [PubMed] [Google Scholar]
- Spencer E. M., Lewis L. J., Lewis U. J. Somatomedin generating activity of the 20,000-dalton variant of human growth hormone. Endocrinology. 1981 Oct;109(4):1301–1302. doi: 10.1210/endo-109-4-1301. [DOI] [PubMed] [Google Scholar]
- Tsushima T., Friesen H. G. Radioreceptor assay for growth hormone. J Clin Endocrinol Metab. 1973 Aug;37(2):334–337. doi: 10.1210/jcem-37-2-334. [DOI] [PubMed] [Google Scholar]
- Tsushima T., Sasaki N., Imai Y., Matsuzaki F., Friesen H. G. Characteristics of solubilized human-somatotropin-binding protein from the liver of pregnant rabbits. Biochem J. 1980 May 1;187(2):479–492. doi: 10.1042/bj1870479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vesterberg O. Isoelectric focusing of proteins in polyacrylamide gels. Biochim Biophys Acta. 1972 Jan 26;257(1):11–19. doi: 10.1016/0005-2795(72)90248-6. [DOI] [PubMed] [Google Scholar]
- Waters M. J., Friesen H. G. Purification and partial characterization of a nonprimate growth hormone receptor. J Biol Chem. 1979 Jul 25;254(14):6815–6825. [PubMed] [Google Scholar]
- Wohnlich L., Moore W. V. Binding of a variant of human growth hormone to liver plasma membranes. Horm Metab Res. 1982 Mar;14(3):138–141. doi: 10.1055/s-2007-1018948. [DOI] [PubMed] [Google Scholar]