Abstract
Homogeneous adenylate deaminase from snail foot muscle deaminated 5'-AMP, 5'-ADP, 5'-ATP and NADH with similar velocity and affinity to all substrates. At millimolar concentration NAD+ was also deaminated to a comparable extent, but NADP+, NADPH and FAD were not substrates for the snail enzyme. The amount of deaminase activity per g of fresh tissue is 5-10 times greater than in the muscle of any other species studied. The activity of the snail deaminase is regulated by pH, KCl and buffer concentrations, and Pi; however, regulation seems to be very poor in comparison with that of muscle deaminases from other species, specific to 5'-AMP. Snail enzyme appears as the first animal deaminase so far described that has such characteristics. It offers also some opportunities as an analytical tool as a consequence of its very high affinity toward adenylates.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BISHOP S. H., CAMPBELL J. W. ARGININE AND UREA BIOSYNTHESIS IN THE EARTHWORM LUMBRICUS TERRESTRIS. Comp Biochem Physiol. 1965 May;15:51–71. doi: 10.1016/0010-406x(65)90240-9. [DOI] [PubMed] [Google Scholar]
- Balinsky J. B., Choritz E. L., Coe C. G., van der Schans G. S. Amino acid metabolism and urea synthesis in naturally aestivating Xenopus laevis. Comp Biochem Physiol. 1967 Jul;22(1):59–68. doi: 10.1016/0010-406x(67)90166-1. [DOI] [PubMed] [Google Scholar]
- Bishop S. H., Barnes L. B. Ammonia forming mechanisms: deamination of 5'-adenylic acid (AMP) by some polychaete annelids. Comp Biochem Physiol B. 1971 Oct;40(2):407–422. doi: 10.1016/0305-0491(71)90225-2. [DOI] [PubMed] [Google Scholar]
- Chung S. T., Aida K. Purification and properties of ATP deaminase from Microsporum audouini. J Biochem. 1967 Jan;61(1):1–9. doi: 10.1093/oxfordjournals.jbchem.a128507. [DOI] [PubMed] [Google Scholar]
- JANSSENS P. A. THE METABOLISM OF THE AESTIVATING AFRICAN LUNGFISH. Comp Biochem Physiol. 1964 Jan;11:105–117. doi: 10.1016/0010-406x(64)90098-2. [DOI] [PubMed] [Google Scholar]
- JEZEWSKA M. M., GORZKOWSKI B., HELLER J. Seasonal changes in the excretion of nitrogen wastes in Helix pomatia. Acta Biochim Pol. 1963;10:309–314. [PubMed] [Google Scholar]
- LINTON S. N., CAMPBELL J. W. Studies on urea cycle enzymes in the terrestrial snail, Otala lactea. Arch Biochem Biophys. 1962 May;97:360–369. doi: 10.1016/0003-9861(62)90089-9. [DOI] [PubMed] [Google Scholar]
- Lee T. W., Campbell J. W. Uric acid synthesis in the terrestrial snail, Otala lactea. Comp Biochem Physiol. 1965 Aug;15(4):457–468. doi: 10.1016/0010-406x(65)90146-5. [DOI] [PubMed] [Google Scholar]
- Minato S., Tagawa T., Nakanishi K. Studies on nonspecific adenosine deaminase from Takadiastase. 3. Studies on inhibitors. J Biochem. 1966 Oct;60(4):352–356. doi: 10.1093/oxfordjournals.jbchem.a128445. [DOI] [PubMed] [Google Scholar]
- Minato S., Tagawa T., Nakanishi K. Studies on nonspecific adenosine deaminase from Takadiastase. I. Purification and properties. J Biochem. 1965 Dec;58(6):519–525. doi: 10.1093/oxfordjournals.jbchem.a128236. [DOI] [PubMed] [Google Scholar]
- POREMBSKA Z., HELLER J. Studies on the ornithine cycle in the tissues of Helix pomatia during hibernation. Acta Biochim Pol. 1962;9:385–390. [PubMed] [Google Scholar]
- PULLMAN M. E., COLOWICK S. P., KAPLAN N. O. Comparison of diphosphopyridine nucleotide with its deaminated derivative in various enzyme systems. J Biol Chem. 1952 Feb;194(2):593–602. [PubMed] [Google Scholar]
- Speeg K. V., Jr, Campbell J. W. Formation and volatilization of ammonia gas by terrestrial snails. Am J Physiol. 1968 Jun;214(6):1392–1402. doi: 10.1152/ajplegacy.1968.214.6.1392. [DOI] [PubMed] [Google Scholar]
- Speeg K. V., Jr, Campbell J. W. Purine biosynthesis and excretion in Otala (=Helix) lactea: an evaluation of the nitrogen excretory potential. Comp Biochem Physiol. 1968 Aug;26(2):579–595. doi: 10.1016/0010-406x(68)90652-x. [DOI] [PubMed] [Google Scholar]
- Stankiewicz A. J. Malate dehydrogenase and lactate dehydrogenase in snail (Helix pomatia) foot muscle extract. Comparison of the activity with NADH and deamino-NADH. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1080–1084. doi: 10.1016/0006-291x(82)92110-6. [DOI] [PubMed] [Google Scholar]
- Stankiewicz A., Spychala J. Comparative studies on muscle AMP-deaminase--II. Regulation by monovalent cations, ATP and orthophosphate of the enzyme from hen, frog and pikeperch muscle. Comp Biochem Physiol B. 1979;62(4):371–374. doi: 10.1016/0305-0491(79)90105-6. [DOI] [PubMed] [Google Scholar]
- Stankiewicz A., Spychała J., Składanowski A., Zydowo M. Comparative studies on muscle AMP-deaminase--I. Purification, molecular weight, subunit structure and metal content of the enzymes from rat, rabbit, hen, frog and pikeperch. Comp Biochem Physiol B. 1979;62(4):363–369. [PubMed] [Google Scholar]
- Su J. C., Li C. C., Ting C. C. A new adenylate deaminase from red marine alga Porphyra crispata. Biochemistry. 1966 Feb;5(2):536–543. doi: 10.1021/bi00866a020. [DOI] [PubMed] [Google Scholar]
- Tischler M. E., Fisher R. R. Oxidation of reduced nicotinamide hypoxanthine dinucleotide by intact rat liver mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):39–49. doi: 10.1016/0005-2728(73)90248-x. [DOI] [PubMed] [Google Scholar]
- WEBSTER H. L. Direct deamination of adenosine diphosphate by washed myofibrils. Nature. 1953 Sep 5;172(4375):453–454. doi: 10.1038/172453a0. [DOI] [PubMed] [Google Scholar]
- Yates M. G. A non-specific adenine nucleotide deaminase from desulfovibrio desulfuricans. Biochim Biophys Acta. 1969 Feb 11;171(2):299–310. doi: 10.1016/0005-2744(69)90163-6. [DOI] [PubMed] [Google Scholar]
- Zielke C. L., Suelter C. H. Substrate specificity and aspects of deamination catalyzed by rabbit muscle 5'-adenylic acid aminohydrolase. J Biol Chem. 1971 Mar 10;246(5):1313–1317. [PubMed] [Google Scholar]