Abstract
The title enzyme is competitively inhibited by compounds, for example alpha-D-xylopyranosylpyridinium salts and 1,6-anhydro-D-glucopyranose, for which the normal 4C1 conformation of the xylopyranose ring is precluded. It is competitively inhibited by compounds, for example beta-D-xylopyranosylpyridinium salts and 1,6-anhydro-L-idopyranose, for which the 1C4 conformation is precluded, and which have no accessible conformations in common with the first set of inhibitors. It is also competitively inhibited by alpha-L-arabinofuranosides. Inhibition by 1,6-anhydroglucopyranose, 1,6-anhydro-L-idopyranose and L-arabinono-gamma-lactone is competitive with respect to each other. alpha-D-Xylopyranosyl fluoride is not a detectable substrate, by itself or in the presence of a representative of any of the three types of inhibitor. On the basis of these and literature data, it is proposed that the natural substrate is a hemicellulose fragment containing the D-Xylp beta (1 leads to 4)-[L-Araf alpha (1 leads to 3)]D-Xylp structure. Tentative inferences about the catalytic mechanism can also be drawn.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braun H., Legler G., Deshusses J., Semenza G. Stereospecific ring opening of conduritol-B-epoxide by an active site asparatate residue of sucrase-isomaltase. Biochim Biophys Acta. 1977 Jul 8;483(1):135–140. doi: 10.1016/0005-2744(77)90015-8. [DOI] [PubMed] [Google Scholar]
- Case G. S., Sinnott M. L., Tenu J. P. The role of magnesium ions in beta-galactosidase hydrolyses. Studies on charge and shape of the beta-galactopyranosyl binding site. Biochem J. 1973 May;133(1):99–104. doi: 10.1042/bj1330099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claeyssens M., De Bruyne C. K. Binding of 4-methylumbelliferyl-beta-D-ribopyranoside to beta-D-xylosidase from Bacillus pumilus. Biochim Biophys Acta. 1978 Mar 28;533(1):98–104. doi: 10.1016/0005-2795(78)90552-4. [DOI] [PubMed] [Google Scholar]
- Claeyssens M., Kersters-Hilderson H., Van Wauwe J. -P., De Bruyne C. K. Purification of Bacillus pumilus beta-D-xylosidase by affinity chromatography. FEBS Lett. 1970 Dec 18;11(5):336–338. doi: 10.1016/0014-5793(70)80562-2. [DOI] [PubMed] [Google Scholar]
- Claeyssens M., Saman E., Kersters-Hilderson H., de Bruyne C. K. Beta-D-xylosidase from Bacillus pumilus. Molecular properties and oligomeric structure. Biochim Biophys Acta. 1975 Oct 20;405(2):475–481. doi: 10.1016/0005-2795(75)90112-9. [DOI] [PubMed] [Google Scholar]
- Hehre E. J., Brewer C. F., Genghof D. S. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride. J Biol Chem. 1979 Jul 10;254(13):5942–5950. [PubMed] [Google Scholar]
- Hehre E. J., Sawai T., Brewer C. F., Nakano M., Kanda T. Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with alpha- and beta-D-glucosyl fluoride. Biochemistry. 1982 Jun 22;21(13):3090–3097. doi: 10.1021/bi00256a009. [DOI] [PubMed] [Google Scholar]
- Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
- Jencks W. P. On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046–4050. doi: 10.1073/pnas.78.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kersters-Hilderson H., Claeyssens M., van Doorslaer E., de Bruyne C. K. Determination of the anomeric configuration of D-xylose with D-xylose isomerases. Carbohydr Res. 1976 Apr;47(2):269–273. doi: 10.1016/s0008-6215(00)84192-0. [DOI] [PubMed] [Google Scholar]
- Kersters-Hilderson H., Loontiens F. G., Claeyssens M., De Bruyne C. K. Partial purification and properties of an induced beta-D-xylosidase of Bacillus pumilus 12. Eur J Biochem. 1969 Jan;7(3):434–441. doi: 10.1111/j.1432-1033.1969.tb19628.x. [DOI] [PubMed] [Google Scholar]
- Kersters-Hilderson H., Van Doorslaer E., De Bruyne C. K. Binding of n-alkyl beta-D-xylopyranosides and n-alkyl 1-thio-beta-D-xylopyranosides to beta-D-xylosidase from Bacillus pumilus PRL B12. Carbohydr Res. 1980 Jan 1;78(1):163–172. doi: 10.1016/s0008-6215(00)83669-1. [DOI] [PubMed] [Google Scholar]
- Kersters-Hilderson H., Van Doorslaer E., De Bruyne C. K., Yamanaka K. Quantitative determination of D-xylose by a coupled reaction of D-xylose isomerase with D-glucitol dehydrogenase. Anal Biochem. 1977 May 15;80(1):41–50. doi: 10.1016/0003-2697(77)90623-6. [DOI] [PubMed] [Google Scholar]
- Kersters-Hilderson H., Van Doorslaer E., De Bruyne C. K. beta-D-xylosidase from Bacillus pumilus PRL B12: hydrolysis of aryl beta-D-xylopyranosides. Carbohydr Res. 1978 Sep;65(2):219–227. doi: 10.1016/s0008-6215(00)84313-x. [DOI] [PubMed] [Google Scholar]
- Kitahata S., Brewer C. F., Genghof D. S., Sawai T., Hehre E. J. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with alpha- and beta-D-glucosyl fluoride. J Biol Chem. 1981 Jun 25;256(12):6017–6026. [PubMed] [Google Scholar]
- Legler G. Active site directed inhibitors and mechanism of action of glycosidases. Mol Cell Biochem. 1973 Nov 15;2(1):31–38. doi: 10.1007/BF01738676. [DOI] [PubMed] [Google Scholar]
- Legler G., Herrchen M. Active site-directed inhibition of galactosidases by conduritol C epoxides (1,2-anhydro-epi- and neo-inositol). FEBS Lett. 1981 Nov 30;135(1):139–144. doi: 10.1016/0014-5793(81)80962-3. [DOI] [PubMed] [Google Scholar]
- Legler G., Roeser K. R., Illig H. K. Reaction of beta-D-glucosidase A3 from Aspergillus wentii with D-glucal. Eur J Biochem. 1979 Nov 1;101(1):85–92. doi: 10.1111/j.1432-1033.1979.tb04219.x. [DOI] [PubMed] [Google Scholar]
- SIMPSON F. J. Microbial pentosanases. I. A survey of microorganisms for the production of enzymes that attack the pentosans of wheat flour. Can J Microbiol. 1954 Oct;1(2):131–139. doi: 10.1139/m55-017. [DOI] [PubMed] [Google Scholar]
- Saman E., Claeyssens M., Kersters-Hilderson H., De Bruyne C. Photo-affinity labeling of beta-D-xylosidase. FEBS Lett. 1976 Mar 15;63(1):211–214. doi: 10.1016/0014-5793(76)80229-3. [DOI] [PubMed] [Google Scholar]
- Saman E., Claeyssens M., de Bruyne C. K. Study of the sulfhydryl groups of beta-D-xylosidase from Bacillus pumilus. Eur J Biochem. 1978 Apr;85(1):301–307. doi: 10.1111/j.1432-1033.1978.tb12239.x. [DOI] [PubMed] [Google Scholar]
- Skujiņs J. Extracellular enzymes in soil. CRC Crit Rev Microbiol. 1976 May;4(4):383–421. doi: 10.3109/10408417609102304. [DOI] [PubMed] [Google Scholar]
- Thoma J. A. A possible mechanism for amylase catalysis. J Theor Biol. 1968 Jun;19(3):297–310. doi: 10.1016/0022-5193(68)90141-0. [DOI] [PubMed] [Google Scholar]
- Van Doorslaer E., Kersters-Hilderson H., De Bruyne C. K. Binding of alkyl beta-D-xylopyranosides, containing branched-chain, cyclic, and substituted aglycon groups, to beta-D-xylosidase from Bacillus pumilus PRL B12. Carbohydr Res. 1980 Jan 15;78(2):317–326. doi: 10.1016/0008-6215(80)90012-9. [DOI] [PubMed] [Google Scholar]
- Van Doorslaer E., Kersters-Hilderson H., De Bruyne C. K. Mechanism of action of beta-D-xylosidase from Bacillus pumilus PRL B12: pH- and alpha-deuterium kinetic isotope effects [proceedings]. Arch Int Physiol Biochim. 1979 Oct;87(4):853–854. [PubMed] [Google Scholar]
