Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 1;215(1):75–81. doi: 10.1042/bj2150075

Evidence for the vitamin K-dependent gamma-carboxylation of the first glutamic acid residue in peptide substrates containing a diglutamyl sequence.

A I Burgess, M P Esnouf, K Rose, R E Offord
PMCID: PMC1152365  PMID: 6138032

Abstract

The peptide substrate commonly used in vitamin K-dependent carboxylation, Phe-Leu-Glu-Glu-Val, has been shown, by the use of high-voltage paper electrophoresis, to be degraded from the N-terminus by a microsomal leucine amino-peptidase. The replacement of phenylalanine with a N-t-butoxycarbonyl group resulted in a tetrapeptide substrate with a blocked N-terminus resistant to enzymic degradation. Vitamin K-dependent carboxylation of this non-degradable substrate gave a unique carboxylated product, which was separated from microsomal protein and unchanged substrate by using DEAE-Sephadex A25 as a final step. The carboxylated product was subsequently decarboxylated in 2HCl and analysed by using g.l.c. coupled to a mass spectrometer. This showed that only the first glutamic acid residue in the peptide substrate was carboxylated.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Esnouf M. P., Prowse C. V. The gamma-carboxy glutamic acid content of human and bovine prothrombin following warfarin treatment. Biochim Biophys Acta. 1977 Feb 22;490(2):471–476. doi: 10.1016/0005-2795(77)90023-x. [DOI] [PubMed] [Google Scholar]
  2. Friedman P. A., Hauschka P. V., Shia M. A., Wallace J. K. Characteristics of the vitamin K-dependent carboxylating system in human placenta. Biochim Biophys Acta. 1979 Mar 7;583(2):261–265. doi: 10.1016/0304-4165(79)90433-1. [DOI] [PubMed] [Google Scholar]
  3. Glimcher M. J., Lefteriou B., Kossiva D. Identification of O-phosphoserine, O-phosphothreonine and gamma-carboxyglutamic acid in the non-collagenous proteins of bovine cementum; comparison with dentin, enamel and bone. Calcif Tissue Int. 1979 Aug 24;28(1):83–86. doi: 10.1007/BF02441222. [DOI] [PubMed] [Google Scholar]
  4. Hauschka P. V., Lian J. B., Gallop P. M. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3925–3929. doi: 10.1073/pnas.72.10.3925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hauschka P. V. Quantitative determination of gamma-carboxyglutamic acid in proteins. Anal Biochem. 1977 May 15;80(1):212–223. doi: 10.1016/0003-2697(77)90640-6. [DOI] [PubMed] [Google Scholar]
  6. Levy R. J., Lian J. B., Gallop P. Atherocalcin, a gamma-carboxyglutamic acid containing protein from atherosclerotic plaque. Biochem Biophys Res Commun. 1979 Nov 14;91(1):41–49. doi: 10.1016/0006-291x(79)90580-1. [DOI] [PubMed] [Google Scholar]
  7. Lian J. B., Prien E. L., Jr, Glimcher M. J., Gallop P. M. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J Clin Invest. 1977 Jun;59(6):1151–1157. doi: 10.1172/JCI108739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rose K., Priddle J. D., Offord R. E., Esnouf M. P. A mass-spectrometric method for the estimation of the ratio of gamma-carboxyglutamic acid to glutamic acid at specific sites in proteins. Application to the N-terminal region of bovine prothrombin. Biochem J. 1980 Apr 1;187(1):239–243. doi: 10.1042/bj1870239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sadowski J. A., Esmon C. T., Suttie J. W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J Biol Chem. 1976 May 10;251(9):2770–2776. [PubMed] [Google Scholar]
  11. Shah D. V., Suttie J. W. The vitamin K dependent, in vitro production of prothrombin. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1397–1402. doi: 10.1016/0006-291x(74)90353-2. [DOI] [PubMed] [Google Scholar]
  12. Stenflo J. Vitamin K and the biosynthesis of prothrombin. IV. Isolation of peptides containing prosthetic groups from normal prothrombin and the corresponding peptides from dicoumarol-induced prothrombin. J Biol Chem. 1974 Sep 10;249(17):5527–5535. [PubMed] [Google Scholar]
  13. Suttie J. W., Hageman J. M. Vitamin K-dependent carboxylase. Development of a peptide substrate. J Biol Chem. 1976 Sep 25;251(18):5827–5830. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES