Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 1;215(1):159–166. doi: 10.1042/bj2150159

Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.

F Vogel, L Lumper
PMCID: PMC1152376  PMID: 6414464

Abstract

The kinetics of thiol-group alkylation in NADPH-cytochrome P-450 reductase during its inactivation by monobromobimane has been studied using the fluorimetric determination of S-bimane-L-cysteine by high-performance liquid chromatography. Loss of activity during the reaction of NADPH-cytochrome P-450 reductase with monobromobimane is caused by the alkylation of one single critical cysteine residue, which can be protected against thiol-specific reagents by NADP(H). The chemical stability of the bimane group allows the digestion of bimane-labelled NADPH-cytochrome P-450 reductase by CNBr. The critical cysteine residue could be located in a CNBr-cleaved peptide purified to homogeneity with Mr 10 500 +/- 1 000 and valine as N-terminus.

Full text

PDF
159

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black S. D., Coon M. J. Structural features of liver microsomal NADPH-cytochrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region. J Biol Chem. 1982 May 25;257(10):5929–5938. [PubMed] [Google Scholar]
  2. Brocklehurst K. The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein-modification reactions. Biochem J. 1979 Sep 1;181(3):775–778. doi: 10.1042/bj1810775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen R. The sequence determination of a protein in a micro scale: the sequence analysis of ribosomal protein L34 of Escherichia coli. Hoppe Seylers Z Physiol Chem. 1976 Jun;357(6):873–886. doi: 10.1515/bchm2.1976.357.1.873. [DOI] [PubMed] [Google Scholar]
  4. Iyanagi T., Makino N., Mason H. S. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases. Biochemistry. 1974 Apr 9;13(8):1701–1710. doi: 10.1021/bi00705a023. [DOI] [PubMed] [Google Scholar]
  5. KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
  6. Kosower N. S., Kosower E. M., Newton G. L., Ranney H. M. Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3382–3386. doi: 10.1073/pnas.76.7.3382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuhn R. W., Walsh K. A., Neurath H. Isolation and partial characterization of an acid carboxypeptidase from yeast. Biochemistry. 1974 Sep 10;13(19):3871–3877. doi: 10.1021/bi00716a008. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lazar T., Ehrig H., Lumper L. The functional role of thiol groups in protease-solubilized NADPH-cytochrome c reductase from pork-liver microsomes. Eur J Biochem. 1977 Jun 15;76(2):365–371. doi: 10.1111/j.1432-1033.1977.tb11604.x. [DOI] [PubMed] [Google Scholar]
  10. Lumper L., Busch F., Dzelić S., Henning J., Lazar T. Studies on the cosubstrate site of protease solubilized NADPH-cytochrome P450 reductase. Int J Pept Protein Res. 1980 Jul;16(1):83–96. doi: 10.1111/j.1399-3011.1980.tb02940.x. [DOI] [PubMed] [Google Scholar]
  11. Nishibayashi-Yamashita H., Sato R. Vitamin K3-dependent NADPH oxidase of liver microsomes. Purification, properties, and identity with microsomal NADPH-cytochrome c reductase. J Biochem. 1970 Feb;67(2):199–210. doi: 10.1093/oxfordjournals.jbchem.a129243. [DOI] [PubMed] [Google Scholar]
  12. Nisimoto Y., Shibata Y. Studies on FAD- and FMN-binding domains in NADPH-cytochrome P-450 reductase from rabbit liver microsomes. J Biol Chem. 1982 Nov 10;257(21):12532–12539. [PubMed] [Google Scholar]
  13. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  14. Schenkman J. B., Cinti D. L. Preparation of microsomes with calcium. Methods Enzymol. 1978;52:83–89. doi: 10.1016/s0076-6879(78)52008-9. [DOI] [PubMed] [Google Scholar]
  15. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  16. Yoshinaga T., Sassa S., Kappas A. The occurrence of molecular interactions among NADPH-cytochrome c reductase, heme oxygenase, and biliverdin reductase in heme degradation. J Biol Chem. 1982 Jul 10;257(13):7786–7793. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES