Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 1;215(1):191–199. doi: 10.1042/bj2150191

On the mechanism of the modulation in vitro of acyl-CoA:cholesterol acyltransferase by progesterone.

S Synouri-Vrettakou, K A Mitropoulos
PMCID: PMC1152380  PMID: 6626174

Abstract

The assay of acyl-CoA:cholesterol acyltransferase (ACAT) in the presence of progesterone resulted in a lower enzyme activity and this inhibition was dependent on the concentration of steroid in the assay mixture. The incubation at 37 degrees C of rat liver microsomal fraction followed by the re-isolation of treated microsomal vesicles and the assay of ACAT resulted in a pre-incubation-time-dependent increase in the activity of the enzyme. This rate of increase was inhibited by the presence of progesterone in the pre-incubation mixture. The incubation of the microsomal fraction in the presence of cholesterol/phosphatidylcholine liposomes, followed by the re-isolation of the treated microsomal vesicles and assay of ACAT, resulted in time-dependent and liposomal cholesterol-concentration-dependent transfer of cholesterol to microsomal vesicles and in an increase in the activity of ACAT. The presence of progesterone during pre-incubation had no effect on the rate of transfer of liposomal cholesterol to the microsomal vesicles. However, progesterone decreased the rate of change in ACAT activity. This effect can be attributed to progesterone associated with treated microsomal vesicles and present during the enzyme assay. Consistent with this, the presence of progesterone has no effect on the size of the non-esterified cholesterol pool that acts as substrate for ACAT. The size of the ACAT substrate pool was modulated in vitro or in vivo and ACAT activity was assayed in the presence of various concentrations of progesterone. The data suggest that the interaction of the steroid with ACAT is at a site other than the catalytic site and that changes in the size of the substrate pool are associated with an increase in ACAT activity, but do not result in changes in the conformation of the enzyme or in co-operative transitions of the enzyme.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. M., Turley S. D., Dietschy J. M. Low and high density lipoproteins and chylomicrons as regulators of rate of cholesterol synthesis in rat liver in vivo. Proc Natl Acad Sci U S A. 1979 Jan;76(1):165–169. doi: 10.1073/pnas.76.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Balasubramaniam S., Mitropoulos K. A., Venkatesan S. Rat-liver acyl-CoA: cholesterol acyltransferase. Eur J Biochem. 1978 Oct;90(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12614.x. [DOI] [PubMed] [Google Scholar]
  4. Balasubramaniam S., Venkatesan S., Mitropoulos K. A., Peters T. J. The submicrosomal localization of acyl-coenzyme A-cholesterol acyltransferase and its substrate, and of cholesteryl esters in rat liver. Biochem J. 1978 Sep 15;174(3):863–872. doi: 10.1042/bj1740863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
  6. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drevon C. A. Cholesteryl ester metabolism in fat- and cholesterol/fat-fed guinea pigs. Atherosclerosis. 1978 Jun;30(2):123–136. doi: 10.1016/0021-9150(78)90055-2. [DOI] [PubMed] [Google Scholar]
  8. Drevon C. A., Weinstein D. B., Steinberg D. Regulation of cholesterol esterification and biosynthesis in monolayer cultures of normal adult rat hepatocytes. J Biol Chem. 1980 Oct 10;255(19):9128–9137. [PubMed] [Google Scholar]
  9. Erickson S. K., Shrewsbury M. A., Brooks C., Meyer D. J. Rat liver acyl-coenzyme A:cholesterol acyltransferase: its regulation in vivo and some of its properties in vitro. J Lipid Res. 1980 Sep;21(7):930–941. [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Farías R. N., Bloj B., Morero R. D., Siñeriz F., Trucco R. E. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition. Biochim Biophys Acta. 1975 Jun 30;415(2):231–251. doi: 10.1016/0304-4157(75)90003-9. [DOI] [PubMed] [Google Scholar]
  12. Farías R. N. Membrane cooperative enzymes as a tool for the investigation of membrane structure and related phenomena. Adv Lipid Res. 1980;17:251–282. doi: 10.1016/b978-0-12-024917-6.50012-4. [DOI] [PubMed] [Google Scholar]
  13. Goldstein J. L., Faust J. R., Dygos J. H., Chorvat R. J., Brown M. S. Inhibition of cholesteryl ester formation in human fibroblasts by an analogue of 7-ketocholesterol and by progesterone. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1877–1881. doi: 10.1073/pnas.75.4.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harry D. S., Dini M., McIntyre N. Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat. Biochim Biophys Acta. 1973 Jan 19;296(1):209–220. doi: 10.1016/0005-2760(73)90061-1. [DOI] [PubMed] [Google Scholar]
  15. Hashimoto S., Dayton S. Stimulation of cholesterol esterification in hepatic microsomes by lipoproteins from normal and hypercholesterolemic rabbit serum. Biochim Biophys Acta. 1979 May 25;573(2):354–360. doi: 10.1016/0005-2760(79)90068-7. [DOI] [PubMed] [Google Scholar]
  16. Hill A. V. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. Biochem J. 1913 Oct;7(5):471–480. doi: 10.1042/bj0070471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lichtenstein A. H., Brecher P. Properties of acyl-CoA:cholesterol acyltransferase in rat liver microsomes. Topological localization and effects of detergents, albumin, and polar steroids. J Biol Chem. 1980 Oct 10;255(19):9098–9104. [PubMed] [Google Scholar]
  18. Mathur S. N., Armstrong M. L., Alber C. A., Spector A. A. Hepatic acylcoenzyme A: cholesterol acyltransferase activity during diet-induced hypercholesterolemia in cynomolgus monkeys. J Lipid Res. 1981 May;22(4):659–667. [PubMed] [Google Scholar]
  19. Mitropoulos K. A., Balasubramaniam S., Myant N. B. The effect of interruption of the enterophecatic circulation of bile acids and of cholesterol feeding on cholesterol 7 alpha-hydroxylase in relation to the diurnal rhythm in its activity. Biochim Biophys Acta. 1973 Dec 20;326(3):428–438. doi: 10.1016/0005-2760(73)90143-4. [DOI] [PubMed] [Google Scholar]
  20. Mitropoulos K. A., Venkatesan S., Balasubramaniam S., Peters T. J. The submicrosomal localization of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase, cholesterol 7alpha-hydroxylase and cholesterol in rat liver. Eur J Biochem. 1978 Jan 16;82(2):419–429. doi: 10.1111/j.1432-1033.1978.tb12036.x. [DOI] [PubMed] [Google Scholar]
  21. Mitropoulos K. A., Venkatesan S., Reeves B. E., Balasubramaniam S. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase and of acyl-CoA--cholesterol acyltransferase by the transfer of non-esterified cholesterol to rat liver microsomal vesicles. Biochem J. 1981 Jan 15;194(1):265–271. doi: 10.1042/bj1940265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitropoulos K. A., Venkatesan S. The influence of cholesterol on the activity, on the isothermic kinetics and on the temperature-induced kinetics of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Biochim Biophys Acta. 1977 Oct 24;489(1):126–142. doi: 10.1016/0005-2760(77)90239-9. [DOI] [PubMed] [Google Scholar]
  23. Nervi F. O., Dietschy J. M. Ability of six different lipoprotein fractions to regulate the rate of hepatic cholesterogenesis in vivo. J Biol Chem. 1975 Nov 25;250(22):8704–8711. [PubMed] [Google Scholar]
  24. Poorthuis B. J., Wirtz K. W. Increased cholesterol esterification in rat liver microsomes in purified non-specific phospholipid transfer protein. Biochim Biophys Acta. 1982 Jan 15;710(1):99–105. doi: 10.1016/0005-2760(82)90195-3. [DOI] [PubMed] [Google Scholar]
  25. Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1981;50:585–621. doi: 10.1146/annurev.bi.50.070181.003101. [DOI] [PubMed] [Google Scholar]
  26. Simpson E. R., Burkhart M. F. Acyl CoA:cholesterol acyl transferase activity in human placental microsomes: inhibition by progesterone. Arch Biochem Biophys. 1980 Mar;200(1):79–85. doi: 10.1016/0003-9861(80)90333-1. [DOI] [PubMed] [Google Scholar]
  27. Simpson E. R., Burkhart M. F. Regulation of cholesterol metabolism by human choriocarcinoma cells in culture: effect of lipoproteins and progesterone on cholesteryl ester synthesis. Arch Biochem Biophys. 1980 Mar;200(1):86–92. doi: 10.1016/0003-9861(80)90334-3. [DOI] [PubMed] [Google Scholar]
  28. Spector A. A., Kaduce T. L., Dane R. W. Effect of dietary fat saturation on acylcoenzyme A:cholesterol acyltransferase activity of rat liver microsomes. J Lipid Res. 1980 Feb;21(2):169–179. [PubMed] [Google Scholar]
  29. Suckling K. E., Boyd G. S., Smellie C. G. Properties of a solubilised and reconstituted preparation of acyl-CoA:cholesterol acyltransferase from rat liver. Biochim Biophys Acta. 1982 Feb 15;710(2):154–163. doi: 10.1016/0005-2760(82)90145-x. [DOI] [PubMed] [Google Scholar]
  30. Synouri-Vrettakou S., Mitropoulos K. A. Acyl-coenzyme A: cholesterol acyltransferase. Transfer of cholesterol to its substrate pool and modulation of activity. Eur J Biochem. 1983 Jun 15;133(2):299–307. doi: 10.1111/j.1432-1033.1983.tb07462.x. [DOI] [PubMed] [Google Scholar]
  31. Venkatesan S., Mitropoulos K. A., Balasubramaniam S., Peters T. J. Biochemical evidence for the heterogeneity of membranes from rat liver endoplasmic reticulum. Studies on the localization of acyl-CoA: cholesterol acyltransferase. Eur J Cell Biol. 1980 Jun;21(2):167–174. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES