Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Nov 1;215(2):303–316. doi: 10.1042/bj2150303

The optical properties of CuA in bovine cytochrome c oxidase determined by low-temperature magnetic-circular-dichroism spectroscopy.

C Greenwood, B C Hill, D Barber, D G Eglinton, A J Thomson
PMCID: PMC1152398  PMID: 6316924

Abstract

The visible-near-i.r.-region m.c.d. (magnetic-circular-dichroism) spectrum recorded at low temperature in the range 450-900 nm is reported for oxidized resting mammalian cytochrome c oxidase. M.c.d. magnetization curves determined at different wavelengths reveal the presence of two paramagnetic species. Curves at 576, 613 and 640 nm fit well to those expected for an x,y-polarized haem transition with g values of 3.03, 2.21 and 1.45, i.e. cytochrome a3+. The m.c.d. features at 515, 785 and 817 nm magnetize as a S = 1/2 paramagnet with average g values close to 2, and simulated m.c.d. magnetization curves obtained by using the observed g values of CuA2+, i.e. 2.18, 2.03 and 1.99, fit well to the experimental observations. The form of the m.c.d. magnetization curve at 466 nm is curious, but it can be explained if CuA2+ and cytochrome a3+ contribute with oppositely signed bands at this wavelength. By comparing the m.c.d. spectrum of the enzyme with that of extracted haem a-bisimidazole complex it has been possible to deconvolute the m.c.d. spectrum of CuA2+, which shows transitions throughout the spectral region from 450 to 950 nm. The m.c.d.-spectral properties of CuA2+ were compared with those of a well-defined type I blue copper centre in azurin isolated from Pseudomonas aeruginosa. The absolute intensities of the m.c.d. signals at equal fields and temperatures for CuA2+ are 10-20-fold greater than those for azurin. The optical spectrum of CuA2+ strongly suggests an assignment as a d9 ion rather than Cu(I) bound to a thiyl radical.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasa R., Albracht P. J., Falk K. E., Lanne B., Vänngard T. EPR signals from cytochrome c oxidase. Biochim Biophys Acta. 1976 Feb 13;422(2):260–272. doi: 10.1016/0005-2744(76)90137-6. [DOI] [PubMed] [Google Scholar]
  2. Antonini E., Brunori M., Greenwood C., Malmström B. G., Rotilio G. C. The interaction of cyanide with cytochrome oxidase. Eur J Biochem. 1971 Nov 11;23(2):396–400. doi: 10.1111/j.1432-1033.1971.tb01633.x. [DOI] [PubMed] [Google Scholar]
  3. BEINERT H., GRIFFITHS D. E., WHARTON D. C., SANDS R. H. Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J Biol Chem. 1962 Jul;237:2337–2346. [PubMed] [Google Scholar]
  4. Babcock G. T., Vickery L. E., Palmer G. Electronic state of heme in cytochrome oxidase. I. Magnetic circular dichroism of the isolated enzyme and its derivatives. J Biol Chem. 1976 Dec 25;251(24):7907–7919. [PubMed] [Google Scholar]
  5. Beinert H., Shaw R. W., Hansen R. E., Hartzell C. R. Studies on the origin of the near-infrared (800-900 nm) absorption of cytochrome c oxidase. Biochim Biophys Acta. 1980 Jul 8;591(2):458–470. doi: 10.1016/0005-2728(80)90176-0. [DOI] [PubMed] [Google Scholar]
  6. Brittain T., Greenwood C., Springall J. P., Thomson A. J. Magnetic-circular-dichroism studies of haem a and its derivatives. Biochem J. 1978 Aug 1;173(2):411–417. doi: 10.1042/bj1730411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brudvig G. W., Stevens T. H., Morse R. H., Chan S. I. Conformations of oxidized cytochrome c oxidase. Biochemistry. 1981 Jun 23;20(13):3912–3921. doi: 10.1021/bi00516a039. [DOI] [PubMed] [Google Scholar]
  8. Eglinton D. G., Gadsby P. M., Sievers G., Peterson J., Thomson A. J. A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives. Biochim Biophys Acta. 1983 Feb 15;742(3):648–658. doi: 10.1016/0167-4838(83)90284-4. [DOI] [PubMed] [Google Scholar]
  9. Eglinton D. G., Johnson M. K., Thomson A. J., Gooding P. E., Greenwood C. Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. Biochem J. 1980 Nov 1;191(2):319–331. doi: 10.1042/bj1910319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Froncisz W., Scholes C. P., Hyde J. S., Wei Y. H., King T. E., Shaw R. W., Beiner H. Hyperfine structure resolved by 2 to 4 GHz EPR of cytochrome c oxidase. J Biol Chem. 1979 Aug 25;254(16):7482–7484. [PubMed] [Google Scholar]
  11. Greenaway F. T., Chan S. H., Vincow G. An EPR study of the lineshape of copper in cytochrome c oxidase. Biochim Biophys Acta. 1977 Jan 25;490(1):62–78. doi: 10.1016/0005-2795(77)90106-4. [DOI] [PubMed] [Google Scholar]
  12. Hoffman B. M., Roberts J. E., Swanson M., Speck S. H., Margoliash E. Copper electron-nuclear double resonance of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1452–1456. doi: 10.1073/pnas.77.3.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson M. K., Eglinton D. G., Gooding P. E., Greenwood C., Thomson A. J. Characterization of the partially reduced cyanide-inhibited derivative of cytochrome c oxidase by optical, electron-paramagnetic-resonance and magnetic-circular-dichroism spectroscopy. Biochem J. 1981 Mar 1;193(3):699–708. doi: 10.1042/bj1930699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lemberg M. R. Cytochrome oxidase. Physiol Rev. 1969 Jan;49(1):48–121. doi: 10.1152/physrev.1969.49.1.48. [DOI] [PubMed] [Google Scholar]
  15. Moss T. H., Shapiro E., King T. E., Beinert H., Hartzell C. The magnetic susceptibility of cytochrome oxidase in the 4.2-1.5 K range. J Biol Chem. 1978 Nov 25;253(22):8072–8073. [PubMed] [Google Scholar]
  16. Parr S. R., Barber D., Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochem J. 1976 Aug 1;157(2):423–430. doi: 10.1042/bj1570423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peisach J., Blumberg W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys. 1974 Dec;165(2):691–708. doi: 10.1016/0003-9861(74)90298-7. [DOI] [PubMed] [Google Scholar]
  18. Powers L., Blumberg W. E., Chance B., Barlow C. H., Leigh J. S., Jr, Smith J., Yonetani T., Vik S., Peisach J. The nature of the copper atoms of cytochrome c oxidase as studied by optical and x-ray absorption edge spectroscopy. Biochim Biophys Acta. 1979 Jun 5;546(3):520–538. doi: 10.1016/0005-2728(79)90085-9. [DOI] [PubMed] [Google Scholar]
  19. Solomon E. I., Hare J. W., Gray H. B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1389–1393. doi: 10.1073/pnas.73.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steffens G. J., Buse G. Studies on cytochrome c oxidase, IV[1--3]. Primary structure and function of subunit II. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):613–619. [PubMed] [Google Scholar]
  21. Stevens T. H., Martin C. T., Wang H., Brudvig G. W., Scholes C. P., Chan S. I. The nature of CuA in cytochrome c oxidase. J Biol Chem. 1982 Oct 25;257(20):12106–12113. [PubMed] [Google Scholar]
  22. TAKEMORI S., KING T. E. EFFECT OF ALKALI AND BOROHYDRIDE ON CARDIAC CYTOCHROME OXIDASE. FORMATION OF SCHIFF BASE. J Biol Chem. 1965 Jan;240:504–513. [PubMed] [Google Scholar]
  23. Thomson A. J., Brittain T., Greenwood C., Springall J. P. Variable-temperature magnetic-circular-dichroism spectra of cytochrome c oxidase and its derivatives. Biochem J. 1977 Aug 1;165(2):327–336. doi: 10.1042/bj1650327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomson A. J., Brittain T., Greenwood C., Springall J. Determination of the heme spin states in cytochrome c oxidase using magnetic circular dichroism. FEBS Lett. 1976 Aug 1;67(1):94–98. doi: 10.1016/0014-5793(76)80877-0. [DOI] [PubMed] [Google Scholar]
  25. Thomson A. J., Englinton D. G., Hill B. C., Greenwood C. The nature of haem a3 in the oxidized state of cytochrome c oxidase. Evidence from low-temperature magnetic-circular-dichroism spectroscopy in the near infrared region. Biochem J. 1982 Oct 1;207(1):167–170. doi: 10.1042/bj2070167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomson A. J., Johnson M. K., Greenwood C., Gooding P. E. A study of the magnetic properties of haem a3 in cytochrome c oxidase by using magnetic-circular-dichroism spectroscopy. Biochem J. 1981 Mar 1;193(3):687–697. doi: 10.1042/bj1930687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thomson A. J., Johnson M. K. Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem J. 1980 Nov 1;191(2):411–420. doi: 10.1042/bj1910411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tweedle M. F., Wilson L. J. Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200 K. Direct evidence for an antiferromagnetically coupled Fe (III)/Cu (II) pair. J Biol Chem. 1978 Nov 25;253(22):8065–8071. [PubMed] [Google Scholar]
  29. Van Gelder B. F., Beinert H. Studies of the heme components of cytochrome c oxidase by EPR spectroscopy. Biochim Biophys Acta. 1969 Sep 16;189(1):1–24. doi: 10.1016/0005-2728(69)90219-9. [DOI] [PubMed] [Google Scholar]
  30. Vanneste W. H. The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. Biochemistry. 1966 Mar;5(3):838–848. doi: 10.1021/bi00867a005. [DOI] [PubMed] [Google Scholar]
  31. Vickery L. E. Spin states of heme proteins by magnetic circular dichroism. Methods Enzymol. 1978;54:284–302. doi: 10.1016/s0076-6879(78)54020-2. [DOI] [PubMed] [Google Scholar]
  32. van Buuren K. J., Nicholis P., van Gelder B. F. Biochemical and biophysical studies on cytochrome aa 3 . VI. Reaction of cyanide with oxidized and reduced enzyme. Biochim Biophys Acta. 1972 Feb 28;256(2):258–276. doi: 10.1016/0005-2728(72)90057-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES