Abstract
The visible-near-i.r.-region m.c.d. (magnetic-circular-dichroism) spectrum recorded at low temperature in the range 450-900 nm is reported for oxidized resting mammalian cytochrome c oxidase. M.c.d. magnetization curves determined at different wavelengths reveal the presence of two paramagnetic species. Curves at 576, 613 and 640 nm fit well to those expected for an x,y-polarized haem transition with g values of 3.03, 2.21 and 1.45, i.e. cytochrome a3+. The m.c.d. features at 515, 785 and 817 nm magnetize as a S = 1/2 paramagnet with average g values close to 2, and simulated m.c.d. magnetization curves obtained by using the observed g values of CuA2+, i.e. 2.18, 2.03 and 1.99, fit well to the experimental observations. The form of the m.c.d. magnetization curve at 466 nm is curious, but it can be explained if CuA2+ and cytochrome a3+ contribute with oppositely signed bands at this wavelength. By comparing the m.c.d. spectrum of the enzyme with that of extracted haem a-bisimidazole complex it has been possible to deconvolute the m.c.d. spectrum of CuA2+, which shows transitions throughout the spectral region from 450 to 950 nm. The m.c.d.-spectral properties of CuA2+ were compared with those of a well-defined type I blue copper centre in azurin isolated from Pseudomonas aeruginosa. The absolute intensities of the m.c.d. signals at equal fields and temperatures for CuA2+ are 10-20-fold greater than those for azurin. The optical spectrum of CuA2+ strongly suggests an assignment as a d9 ion rather than Cu(I) bound to a thiyl radical.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aasa R., Albracht P. J., Falk K. E., Lanne B., Vänngard T. EPR signals from cytochrome c oxidase. Biochim Biophys Acta. 1976 Feb 13;422(2):260–272. doi: 10.1016/0005-2744(76)90137-6. [DOI] [PubMed] [Google Scholar]
- Antonini E., Brunori M., Greenwood C., Malmström B. G., Rotilio G. C. The interaction of cyanide with cytochrome oxidase. Eur J Biochem. 1971 Nov 11;23(2):396–400. doi: 10.1111/j.1432-1033.1971.tb01633.x. [DOI] [PubMed] [Google Scholar]
- BEINERT H., GRIFFITHS D. E., WHARTON D. C., SANDS R. H. Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J Biol Chem. 1962 Jul;237:2337–2346. [PubMed] [Google Scholar]
- Babcock G. T., Vickery L. E., Palmer G. Electronic state of heme in cytochrome oxidase. I. Magnetic circular dichroism of the isolated enzyme and its derivatives. J Biol Chem. 1976 Dec 25;251(24):7907–7919. [PubMed] [Google Scholar]
- Beinert H., Shaw R. W., Hansen R. E., Hartzell C. R. Studies on the origin of the near-infrared (800-900 nm) absorption of cytochrome c oxidase. Biochim Biophys Acta. 1980 Jul 8;591(2):458–470. doi: 10.1016/0005-2728(80)90176-0. [DOI] [PubMed] [Google Scholar]
- Brittain T., Greenwood C., Springall J. P., Thomson A. J. Magnetic-circular-dichroism studies of haem a and its derivatives. Biochem J. 1978 Aug 1;173(2):411–417. doi: 10.1042/bj1730411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brudvig G. W., Stevens T. H., Morse R. H., Chan S. I. Conformations of oxidized cytochrome c oxidase. Biochemistry. 1981 Jun 23;20(13):3912–3921. doi: 10.1021/bi00516a039. [DOI] [PubMed] [Google Scholar]
- Eglinton D. G., Gadsby P. M., Sievers G., Peterson J., Thomson A. J. A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives. Biochim Biophys Acta. 1983 Feb 15;742(3):648–658. doi: 10.1016/0167-4838(83)90284-4. [DOI] [PubMed] [Google Scholar]
- Eglinton D. G., Johnson M. K., Thomson A. J., Gooding P. E., Greenwood C. Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. Biochem J. 1980 Nov 1;191(2):319–331. doi: 10.1042/bj1910319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Froncisz W., Scholes C. P., Hyde J. S., Wei Y. H., King T. E., Shaw R. W., Beiner H. Hyperfine structure resolved by 2 to 4 GHz EPR of cytochrome c oxidase. J Biol Chem. 1979 Aug 25;254(16):7482–7484. [PubMed] [Google Scholar]
- Greenaway F. T., Chan S. H., Vincow G. An EPR study of the lineshape of copper in cytochrome c oxidase. Biochim Biophys Acta. 1977 Jan 25;490(1):62–78. doi: 10.1016/0005-2795(77)90106-4. [DOI] [PubMed] [Google Scholar]
- Hoffman B. M., Roberts J. E., Swanson M., Speck S. H., Margoliash E. Copper electron-nuclear double resonance of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1452–1456. doi: 10.1073/pnas.77.3.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. K., Eglinton D. G., Gooding P. E., Greenwood C., Thomson A. J. Characterization of the partially reduced cyanide-inhibited derivative of cytochrome c oxidase by optical, electron-paramagnetic-resonance and magnetic-circular-dichroism spectroscopy. Biochem J. 1981 Mar 1;193(3):699–708. doi: 10.1042/bj1930699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemberg M. R. Cytochrome oxidase. Physiol Rev. 1969 Jan;49(1):48–121. doi: 10.1152/physrev.1969.49.1.48. [DOI] [PubMed] [Google Scholar]
- Moss T. H., Shapiro E., King T. E., Beinert H., Hartzell C. The magnetic susceptibility of cytochrome oxidase in the 4.2-1.5 K range. J Biol Chem. 1978 Nov 25;253(22):8072–8073. [PubMed] [Google Scholar]
- Parr S. R., Barber D., Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochem J. 1976 Aug 1;157(2):423–430. doi: 10.1042/bj1570423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peisach J., Blumberg W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys. 1974 Dec;165(2):691–708. doi: 10.1016/0003-9861(74)90298-7. [DOI] [PubMed] [Google Scholar]
- Powers L., Blumberg W. E., Chance B., Barlow C. H., Leigh J. S., Jr, Smith J., Yonetani T., Vik S., Peisach J. The nature of the copper atoms of cytochrome c oxidase as studied by optical and x-ray absorption edge spectroscopy. Biochim Biophys Acta. 1979 Jun 5;546(3):520–538. doi: 10.1016/0005-2728(79)90085-9. [DOI] [PubMed] [Google Scholar]
- Solomon E. I., Hare J. W., Gray H. B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1389–1393. doi: 10.1073/pnas.73.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffens G. J., Buse G. Studies on cytochrome c oxidase, IV[1--3]. Primary structure and function of subunit II. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):613–619. [PubMed] [Google Scholar]
- Stevens T. H., Martin C. T., Wang H., Brudvig G. W., Scholes C. P., Chan S. I. The nature of CuA in cytochrome c oxidase. J Biol Chem. 1982 Oct 25;257(20):12106–12113. [PubMed] [Google Scholar]
- TAKEMORI S., KING T. E. EFFECT OF ALKALI AND BOROHYDRIDE ON CARDIAC CYTOCHROME OXIDASE. FORMATION OF SCHIFF BASE. J Biol Chem. 1965 Jan;240:504–513. [PubMed] [Google Scholar]
- Thomson A. J., Brittain T., Greenwood C., Springall J. P. Variable-temperature magnetic-circular-dichroism spectra of cytochrome c oxidase and its derivatives. Biochem J. 1977 Aug 1;165(2):327–336. doi: 10.1042/bj1650327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson A. J., Brittain T., Greenwood C., Springall J. Determination of the heme spin states in cytochrome c oxidase using magnetic circular dichroism. FEBS Lett. 1976 Aug 1;67(1):94–98. doi: 10.1016/0014-5793(76)80877-0. [DOI] [PubMed] [Google Scholar]
- Thomson A. J., Englinton D. G., Hill B. C., Greenwood C. The nature of haem a3 in the oxidized state of cytochrome c oxidase. Evidence from low-temperature magnetic-circular-dichroism spectroscopy in the near infrared region. Biochem J. 1982 Oct 1;207(1):167–170. doi: 10.1042/bj2070167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson A. J., Johnson M. K., Greenwood C., Gooding P. E. A study of the magnetic properties of haem a3 in cytochrome c oxidase by using magnetic-circular-dichroism spectroscopy. Biochem J. 1981 Mar 1;193(3):687–697. doi: 10.1042/bj1930687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson A. J., Johnson M. K. Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem J. 1980 Nov 1;191(2):411–420. doi: 10.1042/bj1910411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tweedle M. F., Wilson L. J. Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200 K. Direct evidence for an antiferromagnetically coupled Fe (III)/Cu (II) pair. J Biol Chem. 1978 Nov 25;253(22):8065–8071. [PubMed] [Google Scholar]
- Van Gelder B. F., Beinert H. Studies of the heme components of cytochrome c oxidase by EPR spectroscopy. Biochim Biophys Acta. 1969 Sep 16;189(1):1–24. doi: 10.1016/0005-2728(69)90219-9. [DOI] [PubMed] [Google Scholar]
- Vanneste W. H. The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. Biochemistry. 1966 Mar;5(3):838–848. doi: 10.1021/bi00867a005. [DOI] [PubMed] [Google Scholar]
- Vickery L. E. Spin states of heme proteins by magnetic circular dichroism. Methods Enzymol. 1978;54:284–302. doi: 10.1016/s0076-6879(78)54020-2. [DOI] [PubMed] [Google Scholar]
- van Buuren K. J., Nicholis P., van Gelder B. F. Biochemical and biophysical studies on cytochrome aa 3 . VI. Reaction of cyanide with oxidized and reduced enzyme. Biochim Biophys Acta. 1972 Feb 28;256(2):258–276. doi: 10.1016/0005-2728(72)90057-6. [DOI] [PubMed] [Google Scholar]
