Abstract
Chicken liver fatty acid synthase is inhibited by the thiol-modifying reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetamide. Total inactivation of the activity for fatty acid synthesis requires the modification of about 8 of the nearly 50 freely accessible thiol groups per molecule. The differential binding of iodo[14C]acetamide to phenylmethylsulphonyl fluoride-modified enzyme in the absence and in the presence of excess acetyl-CoA shows complete modification of one cysteine-SH site of the condensing enzyme and partial modification of the pantetheine-SH site for a total of approx. 1.4 mol of iodoacetamide bound per mol of enzyme. The reaction of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) generates disulphide cross-links for each molecule of the reagent added, but 95% of these cross-links are intrasubunit. Both the iodoacetamide- and 5,5'-dithiobis-(2-nitrobenzoic acid)-modified species catalyse all the component partial reactions of fatty acid synthesis except the condensation reaction. The results obtained with iodoacetamide show that in the dimeric fatty acid synthase modification of one cysteine-SH condensing site and/or one pantetheine-SH site per dimer is sufficient to affect inhibition of condensing activity and the activity for fatty acid synthesis, and are in accord with a recently proposed model for the mechanism of action of animal fatty acid synthases [Kumar (1982) J. Theor. Biol. 95, 263-283].
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad P. M., Feltman D. S., Ahmad F. Rat mammary-gland fatty acid synthase. A simple purification procedure and stoicheiometry of CoA ester binding. Biochem J. 1982 Apr 1;203(1):45–50. doi: 10.1042/bj2030045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arslanian M. J., Stoops J. K., Oh Y. H., Wakil S. J. On the 4'-phosphopantetheine content of chicken and rat liver fatty acid synthetases. J Biol Chem. 1976 May 25;251(10):3194–3196. [PubMed] [Google Scholar]
- Bloch K., Vance D. Control mechanisms in the synthesis of saturated fatty acids. Annu Rev Biochem. 1977;46:263–298. doi: 10.1146/annurev.bi.46.070177.001403. [DOI] [PubMed] [Google Scholar]
- Buckner J. S., Kolattukudy P. E. One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry. 1976 May 4;15(9):1948–1957. doi: 10.1021/bi00654a024. [DOI] [PubMed] [Google Scholar]
- Clements P. R., Barden R. E., Ahmad P. M., Chisner M. B., Ahmad F. Irreversible inhibition of fatty acid synthase from rat mammary gland with S-(4-bromo-2,3-dioxobutyl)-CoA. Effect on the partial reactions, protection by substrates and stoichiometry studies. Biochem J. 1982 Nov 1;207(2):291–296. doi: 10.1042/bj2070291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodds P. F., Guzman M. G., Chalberg S. C., Anderson G. J., Kumar S. Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase. J Biol Chem. 1981 Jun 25;256(12):6282–6290. [PubMed] [Google Scholar]
- Guy P., Law S., Hardie G. Mammalian fatty acid synthetase: evidence for subunit identity and specific removal of the thioesterase component using elastase digestion. FEBS Lett. 1978 Oct 1;94(1):33–37. doi: 10.1016/0014-5793(78)80900-4. [DOI] [PubMed] [Google Scholar]
- Jacob E. J., Butterworth P. H., Porter J. W. Studies on the substrate binding sites of the pigeon liver fatty acid synthetase. Arch Biochem Biophys. 1968 Mar 20;124(1):392–400. doi: 10.1016/0003-9861(68)90343-3. [DOI] [PubMed] [Google Scholar]
- Katiyar S. S., Pan D., Porter J. W. Role of cysteine and 4'-phosphopantetheine in the inactivation of pigeon liver fatty acid synthetase by S-(4-bromo-2,3-dioxobutyl)-coenzyme A. Biochem Biophys Res Commun. 1982 Jan 29;104(2):517–522. doi: 10.1016/0006-291x(82)90667-2. [DOI] [PubMed] [Google Scholar]
- Katiyar S. S., Porter J. W. Mechanism of fatty acid synthesis. Life Sci. 1977 Mar 1;20(5):737–759. doi: 10.1016/0024-3205(77)90024-8. [DOI] [PubMed] [Google Scholar]
- Kumar S. A model for the mechanism of action of animal fatty acid synthetases. J Theor Biol. 1982 Mar 21;95(2):263–283. doi: 10.1016/0022-5193(82)90244-2. [DOI] [PubMed] [Google Scholar]
- Kumar S., Dorsey J. A., Muesing R. A., Porter J. W. Comparative studies of the pigeon liver fatty acid synthetase complex and its subunits. Kinetics of partial reactions and the number of binding sites for acetyl and malonyl groups. J Biol Chem. 1970 Sep 25;245(18):4732–4744. [PubMed] [Google Scholar]
- Kumar S. Fatty acid synthetase complex. Selective inactivation by phenylmethylsulphonyl fluoride. Biochem Biophys Res Commun. 1973 Jul 2;53(1):334–341. doi: 10.1016/0006-291x(73)91438-1. [DOI] [PubMed] [Google Scholar]
- Kumar S. Functional deacylases of pigeon liver fatty acid synthetase complex. J Biol Chem. 1975 Jul 10;250(13):5150–5158. [PubMed] [Google Scholar]
- Kumar S., Porter J. W. The effects of reduced nicotinamide adenine dinucleotide phosphate, its structural analogues, and coenzyme A and its derivatives on the rate of dissociation, conformation, and enzyme activity of the pigeon liver fatty acid synthetase complex. J Biol Chem. 1971 Dec 25;246(24):7780–7789. [PubMed] [Google Scholar]
- Kumar S., Varagiannis E. Chicken liver fatty acid synthetase dimer: evidence of asymmetrical structure from iodoacetamide inhibition studies. Biosci Rep. 1982 Mar;2(3):195–201. doi: 10.1007/BF01116383. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lynen F. The role of biotin-dependent carboxylations in biosynthetic reactions. Biochem J. 1967 Feb;102(2):381–400. doi: 10.1042/bj1020381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon J. E., Phillips G. T., Abramovitz A. S., Porter J. W. Intermediates of fatty acid synthesis: sites of binding to the pigeon liver fatty acid synthetase. Arch Biochem Biophys. 1970 Jun;138(2):372–379. doi: 10.1016/0003-9861(70)90359-0. [DOI] [PubMed] [Google Scholar]
- Norris R., Brocklehurst K. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2'-dipyridyl disulphide as a thiol titrant and reactivity probe. Biochem J. 1976 Nov;159(2):245–257. doi: 10.1042/bj1590245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oesterhelt D., Bauer H., Kresze G. B., Steber L., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. 1. Kinetics of inactivation and extent of carboxamidomethylation. Eur J Biochem. 1977 Sep 15;79(1):173–180. doi: 10.1111/j.1432-1033.1977.tb11795.x. [DOI] [PubMed] [Google Scholar]
- Phillips G. T., Nixon J. E., Dorsey J. A., Butterworth P. H., Chesterton C. J., Porter J. W. The mechanism of synthesis of fatty acids by the pigeon liver enzyme system. Arch Biochem Biophys. 1970 Jun;138(2):380–391. doi: 10.1016/0003-9861(70)90360-7. [DOI] [PubMed] [Google Scholar]
- Poulose A. J., Kolattukudy P. E. Presence of one essential arginine that specifically binds the 2'-phosphate of NADPH on each of the ketoacyl reductase and enoyl reductase active sites of fatty acid synthetase. Arch Biochem Biophys. 1980 Feb;199(2):457–464. doi: 10.1016/0003-9861(80)90302-1. [DOI] [PubMed] [Google Scholar]
- Schweizer E., Kniep B., Castorph H., Holzner U. Pantetheine-free mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem. 1973 Nov 15;39(2):353–362. doi: 10.1111/j.1432-1033.1973.tb03133.x. [DOI] [PubMed] [Google Scholar]
- Smith S., Abraham S. Fatty acid synthetase from lactating rat mammary gland. I. Isolation and properties. J Biol Chem. 1970 Jun;245(12):3209–3217. [PubMed] [Google Scholar]
- Smith S., Libertini L. J. Specificity and site of action of a mammary gland thioesterase which releases acyl moieties from thioester linkage to the fatty acid synthetase. Arch Biochem Biophys. 1979 Aug;196(1):88–92. doi: 10.1016/0003-9861(79)90554-x. [DOI] [PubMed] [Google Scholar]
- Smith S., Stern A. Subunit structure of the mammalian fatty acid synthetase: further evidence for a homodimer. Arch Biochem Biophys. 1979 Oct 15;197(2):379–387. doi: 10.1016/0003-9861(79)90259-5. [DOI] [PubMed] [Google Scholar]
- Srinivasan K. R., Kumar S. Reduced nicotinamide adenine dinucleotide phosphate, a structural and conformational probe of chicken liver fatty acid synthetase. J Biol Chem. 1976 Sep 10;251(17):5352–5360. [PubMed] [Google Scholar]
- Stern A., Sedgwick B., Smith S. The free coenzyme A requirement of animal fatty acid synthetase. Participation in the continuous exchange of acetyl and malonyl moieties between coenzyme a thioester and enzyme. J Biol Chem. 1982 Jan 25;257(2):799–803. [PubMed] [Google Scholar]
- Stoops J. K., Wakil S. J. Animal fatty acid synthetase. A novel arrangement of the beta-ketoacyl synthetase sites comprising domains of the two subunits. J Biol Chem. 1981 May 25;256(10):5128–5133. [PubMed] [Google Scholar]
- Stoops J. K., Wakil S. J. The reaction of chicken liver fatty acid synthetase with 5,5'-dithiobis(2-nitrobenzoic acid). Biochem Biophys Res Commun. 1982 Feb 11;104(3):1018–1024. doi: 10.1016/0006-291x(82)91351-1. [DOI] [PubMed] [Google Scholar]
- TSOU C. L. Relation between modification of functional groups of proteins and their biological activity. I.A graphical method for the determination of the number and type of essential groups. Sci Sin. 1962 Nov;11:1535–1558. [PubMed] [Google Scholar]
- Wakil S. J., Stoops J. K., Mattick J. S. The fatty acid synthetase-structure-function relationship and mechanism of palmitate synthesis. Cardiovasc Res Cent Bull. 1981 Jul-Sep;20(1):1–23. [PubMed] [Google Scholar]
- Wood W. I., Peterson D. O., Bloch K. Subunit structure of Mycobacterium smegmatis fatty acid synthetase. Evidence for identical multifunctional polypeptide chains. J Biol Chem. 1978 Apr 25;253(8):2650–2656. [PubMed] [Google Scholar]

