Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Dec 1;215(3):617–625. doi: 10.1042/bj2150617

Purification and characterization of a new cytosolic glutathione S-transferase (glutathione S-transferase X) from rat liver.

T Friedberg, U Milbert, P Bentley, T M Guenther, F Oesch
PMCID: PMC1152444  PMID: 6661188

Abstract

A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
617

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basha S. M., Roberts R. M. A simple colorimetric method for the determination of tryptophan. Anal Biochem. 1977 Feb;77(2):378–386. doi: 10.1016/0003-2697(77)90251-2. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Friedberg T., Bentley P., Stasiecki P., Glatt H. R., Raphael D., Oesch F. The identification, solubilization, and characterization of microsome-associated glutathione S-transferases. J Biol Chem. 1979 Dec 10;254(23):12028–12033. [PubMed] [Google Scholar]
  4. Gillham B. The reaction of aralkyl sulphate esters with glutathione catalysed by rat liver preparations. Biochem J. 1971 Feb;121(4):667–672. doi: 10.1042/bj1210667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glatt H. R., Billings R., Platt K. L., Oesch F. Improvement of the correlation of bacterial mutagenicity with carcinogenicity of benzo(a)pyrene and four of its major metabolites by activation with intact liver cells instead of cell homogenate. Cancer Res. 1981 Jan;41(1):270–277. [PubMed] [Google Scholar]
  6. Glatt H., Oesch F. Inactivation of electrophilic metabolites by glutathione S-transferases and limitation of the system due to subcellular localization. Arch Toxicol. 1977 Dec 30;39(1-2):87–96. doi: 10.1007/BF00343278. [DOI] [PubMed] [Google Scholar]
  7. Golan M. D., Bücker M., Schmassmann H. U., Raphael D., Jung R., Bindel U., Brase H. O., Tegtmeyer F., Friedberg T., Lorenz J. Characterization of dog hepatic drug-metabolizing enzymes and resultant effects on benzo[a]pyrene metabolite pattern and mutagenicity. Drug Metab Dispos. 1980 May-Jun;8(3):121–126. [PubMed] [Google Scholar]
  8. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferase AA from rat liver. Arch Biochem Biophys. 1976 Aug;175(2):710–716. doi: 10.1016/0003-9861(76)90563-4. [DOI] [PubMed] [Google Scholar]
  9. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  10. Hayes J. D., Clarkson G. H. Purification and characterization of three forms of glutathione S-transferase A. A comparative study of the major YaYa-, YbYb- and YcYc-containing glutathione S-transferases. Biochem J. 1982 Dec 1;207(3):459–470. doi: 10.1042/bj2070459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayes J. D., Strange R. C., Percy-Robb I. W. Cholic acid binding by glutathione S-transferases from rat liver cytosol. Biochem J. 1980 Jan 1;185(1):83–87. doi: 10.1042/bj1850083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jerina D. M., Daly J. W. Arene oxides: a new aspect of drug metabolism. Science. 1974 Aug 16;185(4151):573–582. doi: 10.1126/science.185.4151.573. [DOI] [PubMed] [Google Scholar]
  13. Kraus P. Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria. Hoppe Seylers Z Physiol Chem. 1980 Jan;361(1):9–15. doi: 10.1515/bchm2.1980.361.1.9. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Mannervik B., Jensson H. Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol. J Biol Chem. 1982 Sep 10;257(17):9909–9912. [PubMed] [Google Scholar]
  16. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  17. Moron M. S., Depierre J. W., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979 Jan 4;582(1):67–78. doi: 10.1016/0304-4165(79)90289-7. [DOI] [PubMed] [Google Scholar]
  18. Morrison W. S., Wong G., Seltzer S. Maleylacetone cis-trans-isomerase: affinity chromatography on glutathione-bound sepharose. Two-substrate-binding sequence from inhibition patterns. Biochemistry. 1976 Sep 21;15(19):4228–4233. doi: 10.1021/bi00664a015. [DOI] [PubMed] [Google Scholar]
  19. Oesch F. Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica. 1973 May;3(5):305–340. doi: 10.3109/00498257309151525. [DOI] [PubMed] [Google Scholar]
  20. Oesch F., Schmassmann H., Ohnhaus E., Althaus U., Lorenz J. Monooxygenase, epoxide hydrolase, and glutathione-S-transferase activities in human lung. Variation between groups of bronchogenic carcinoma and non-cancer patients and interindividual differences. Carcinogenesis. 1980;1(10):827–835. doi: 10.1093/carcin/1.10.827. [DOI] [PubMed] [Google Scholar]
  21. Simons P. C., Vander Jagt D. L. Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal Biochem. 1977 Oct;82(2):334–341. doi: 10.1016/0003-2697(77)90169-5. [DOI] [PubMed] [Google Scholar]
  22. Sims P., Grover P. L. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv Cancer Res. 1974;20:165–274. doi: 10.1016/s0065-230x(08)60111-6. [DOI] [PubMed] [Google Scholar]
  23. Stasiecki P., Oesch F., Bruder G., Jarasch E. D., Franke W. W. Distribution of enzymes involved in metabolism of polycyclic aromatic hydrocarbons among rat liver endomembranes and plasma membranes. Eur J Cell Biol. 1980 Apr;21(1):79–92. [PubMed] [Google Scholar]
  24. Van Cantfort J., Manil L., Gielen J. E., Glatt H. R., Oesch F. A new assay for glutathione S-transferase using [3H]-benzo(a)pyrene 4,5-oxide as substrate. Inducibility by various chemicals in different rat tissues compared to that of aryl hydrocarbon hydroxylase and epoxide hydratase. Biochem Pharmacol. 1979;28(4):455–460. doi: 10.1016/0006-2952(79)90235-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES