Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Dec 1;215(3):627–636. doi: 10.1042/bj2150627

Studies on the soluble phosphodiesterases of chicken gizzard smooth muscle.

R J Birnbaum, J F Head
PMCID: PMC1152445  PMID: 6318728

Abstract

In this study we describe the identification of four soluble forms of cyclic nucleotide phosphodiesterase from chicken gizzard smooth muscle. These isoenzymes were separated from one another by ion-exchange chromatography on DEAE-cellulose and by calmodulin-Sepharose affinity chromatography. Each form migrates as a single discrete band when it is electrophoresed on non-denaturing polyacrylamide gels and stained for phosphodiesterase activity. Each form is also eluted as a single peak on gel-permeation chromatography, giving apparent Mr values of 114 000, 116 000, 122 000 and 59 000. All four enzymes have apparent Km values in the 0-20 microM range, although their relative specificities for cyclic AMP and cyclic GMP differ. Two of the forms bind to calmodulin in a Ca2+-dependent manner; however, only one is activated by calmodulin. The interaction of the second calmodulin-binding form with calmodulin is disrupted by the papaverine derivative verapamil without significantly altering the hydrolytic activity of the enzyme.

Full text

PDF
627

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Conti M. A., Hathaway D. R., Klee C. B. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Dec 10;253(23):8347–8350. [PubMed] [Google Scholar]
  2. Andersson R., Nilsson K., Wikberg J., Johansson S., Mohme-Lundholm E., Lundholm L. Cyclic nucleotides and the contraction of smooth muscle. Adv Cyclic Nucleotide Res. 1975;5:491–518. [PubMed] [Google Scholar]
  3. Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
  4. Bhalla R. C., Sharma R. V., Gupta R. C. Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. Biochem J. 1982 Jun 1;203(3):583–592. doi: 10.1042/bj2030583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhalla R. C., Webb R. C., Singh D., Brock T. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Am J Physiol. 1978 May;234(5):H508–H514. doi: 10.1152/ajpheart.1978.234.5.H508. [DOI] [PubMed] [Google Scholar]
  6. Bostróm S. L., Ljung B., Mårdh S., Forsen S., Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin. Nature. 1981 Aug 20;292(5825):777–778. doi: 10.1038/292777a0. [DOI] [PubMed] [Google Scholar]
  7. Boudreau R. J., Drummond G. I. A modified assay of 3':5'-cyclic-AMP phosphodiesterase. Anal Biochem. 1975 Feb;63(2):388–399. doi: 10.1016/0003-2697(75)90361-9. [DOI] [PubMed] [Google Scholar]
  8. Bär H. P. Cyclic nucleotides and smooth muscle. Adv Cyclic Nucleotide Res. 1974;4(0):195–237. [PubMed] [Google Scholar]
  9. Diamond J. Role of cyclic nucleotides in control of smooth muscle contraction. Adv Cyclic Nucleotide Res. 1978;9:327–340. [PubMed] [Google Scholar]
  10. Ebashi S., Toyo-Oka T., Nonmura Y. Gizzard Troponin. J Biochem. 1975 Oct;78(4):859–861. doi: 10.1093/oxfordjournals.jbchem.a130976. [DOI] [PubMed] [Google Scholar]
  11. Epstein P. M., Fiss K., Hachisu R., Andrenyak D. M. Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1142–1149. doi: 10.1016/0006-291x(82)91089-0. [DOI] [PubMed] [Google Scholar]
  12. Epstein P. M., Strada S. J., Sarada K., Thompson W. J. Catalytic and kinetic properties of purified high-affinity cyclic AMP phosphodiesterase from dog kidney. Arch Biochem Biophys. 1982 Oct 1;218(1):119–133. doi: 10.1016/0003-9861(82)90327-7. [DOI] [PubMed] [Google Scholar]
  13. Gopalakrishna R., Anderson W. B. Calmodulin interacts with cyclic nucleotide phosphodiesterase and calcineurin by binding to a metal ion-independent hydrophobic region on these proteins. J Biol Chem. 1983 Feb 25;258(4):2405–2409. [PubMed] [Google Scholar]
  14. Goren E. N., Hirsch A. H., Rosen O. M. Activity stain for the detection of cyclic nucleotide phosphodiesterase separated by polyacrylamide gel electrophoresis and its application to the cyclic nucleotide phosphodiesterase of beef heart. Anal Biochem. 1971 Sep;43(1):156–161. doi: 10.1016/0003-2697(71)90120-5. [DOI] [PubMed] [Google Scholar]
  15. Hartshorne D. J., Mrwa U. Regulation of smooth muscle actomyosin. Blood Vessels. 1982;19(1):1–18. doi: 10.1159/000158369. [DOI] [PubMed] [Google Scholar]
  16. Head J. F., Masure H. R., Kaminer B. Identification and purification of a phenothiazine binding fragment from bovine brain calmodulin. FEBS Lett. 1982 Jan 11;137(1):71–74. doi: 10.1016/0014-5793(82)80317-7. [DOI] [PubMed] [Google Scholar]
  17. Hidaka H., Yamaki T., Yamabe H. Two forms of Ca2+-dependent cyclic 3':5'-nucleotide phosphodiesterase from human aorta and effect of free fatty acids. Arch Biochem Biophys. 1978 Apr 30;187(2):315–321. doi: 10.1016/0003-9861(78)90040-1. [DOI] [PubMed] [Google Scholar]
  18. Ho H. C., Wirch E., Stevens F. C., Wang J. H. Purification of a Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart by specific interaction with its Ca2+-dependent modulator protein. J Biol Chem. 1977 Jan 10;252(1):43–50. [PubMed] [Google Scholar]
  19. Ilien B., Stierlé A., Lugnier C., Stoclet J. C., Landry Y. Separation of three cyclic-nucleotide-phosphodiesterases from bovine aorta. Biochem Biophys Res Commun. 1978 Jul 28;83(2):486–492. doi: 10.1016/0006-291x(78)91016-1. [DOI] [PubMed] [Google Scholar]
  20. Keravis T. M., Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterase activities from pig coronary arteries. Lack of interconvertibility of major forms. Biochim Biophys Acta. 1980;613(1):116–129. doi: 10.1016/0005-2744(80)90198-9. [DOI] [PubMed] [Google Scholar]
  21. Klee C. B., Crouch T. H., Krinks M. H. Subunit structure and catalytic properties of bovine brain Ca2+-dependent cyclic nucleotide phosphodiesterase. Biochemistry. 1979 Feb 20;18(4):722–729. doi: 10.1021/bi00571a026. [DOI] [PubMed] [Google Scholar]
  22. LaPorte D. C., Toscano W. A., Jr, Storm D. R. Cross-linking of iodine-125-labeled, calcium-dependent regulatory protein to the Ca2+-sensitive phosphodiesterase purified from bovine heart. Biochemistry. 1979 Jun 26;18(13):2820–2825. doi: 10.1021/bi00580a021. [DOI] [PubMed] [Google Scholar]
  23. LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
  24. Lüllmann H., Timmermans P. B., Ziegler A. Accumulation of drugs by resting or beating cardiac tissue. Eur J Pharmacol. 1979 Dec 20;60(4):277–285. doi: 10.1016/0014-2999(79)90231-0. [DOI] [PubMed] [Google Scholar]
  25. Marchmont R. J., Houslay M. D. Characterization of the phosphorylated form of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):653–660. doi: 10.1042/bj1950653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morrill M. E., Thompson S. T., Stellwagen E. Purification of a cyclic nucleotide phosphodiesterase from bovine brain using blue dextran-Sepharose chromatography. J Biol Chem. 1979 Jun 10;254(11):4371–4374. [PubMed] [Google Scholar]
  27. Murtaugh T. J., Bhalla R. C. Multiple forms of cyclic nucleotide phosphodiesterase from bovine carotid artery smooth muscle. Arch Biochem Biophys. 1979 Sep;196(2):467–474. doi: 10.1016/0003-9861(79)90298-4. [DOI] [PubMed] [Google Scholar]
  28. Nishikori K., Takenaka T., Maeno H. Stimulation of microsomal calcium uptake and protein phosphorylation by adenosine cyclic 3', 5'-monophosphate in rat uterus. Mol Pharmacol. 1977 Jul;13(4):671–678. [PubMed] [Google Scholar]
  29. Pang D. C., Sperelakis N. Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles. Eur J Pharmacol. 1983 Feb 18;87(2-3):199–207. doi: 10.1016/0014-2999(83)90330-8. [DOI] [PubMed] [Google Scholar]
  30. Purvis K., Olsen A., Hansson V. Calmodulin-dependent cyclic nucleotide phosphodiesterases in the immature rat testis. J Biol Chem. 1981 Nov 25;256(22):11434–11441. [PubMed] [Google Scholar]
  31. Sharma R. K., Wang T. H., Wirch E., Wang J. H. Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem. 1980 Jun 25;255(12):5916–5923. [PubMed] [Google Scholar]
  32. Sims N. R., Carnegie P. R. Use of fluorescamine for the estimation of protein in the presence of detergent Triton X-100. Anal Biochem. 1975 May 12;65(1-2):578–580. doi: 10.1016/0003-2697(75)90550-3. [DOI] [PubMed] [Google Scholar]
  33. Smoake J. A., Johnson L. S., Peake G. T. Calmodulin-dependent high-affinity cyclic AMP phosphodiesterase in liver membranes. Arch Biochem Biophys. 1981 Feb;206(2):331–335. doi: 10.1016/0003-9861(81)90098-9. [DOI] [PubMed] [Google Scholar]
  34. Sobieszek A., Small J. V. Myosin-linked calcium regulation in vertebrate smooth muscle. J Mol Biol. 1976 Mar 25;102(1):75–92. doi: 10.1016/0022-2836(76)90074-7. [DOI] [PubMed] [Google Scholar]
  35. Tanaka T., Hidaka H. Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem. 1980 Dec 10;255(23):11078–11080. [PubMed] [Google Scholar]
  36. Thompson W. J., Brooker G., Appleman M. M. Assay of cyclic nucleotide phosphodiesterases with radioactive substrates. Methods Enzymol. 1974;38:205–212. doi: 10.1016/0076-6879(74)38033-0. [DOI] [PubMed] [Google Scholar]
  37. Thompson W. J., Epstein P. M., Strada S. J. Purification and characterization of high-affinity cyclic adenosine monophosphate phosphodiesterase from dog kidney. Biochemistry. 1979 Nov 13;18(23):5228–5237. doi: 10.1021/bi00590a030. [DOI] [PubMed] [Google Scholar]
  38. Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
  39. Tucker M. M., Robinson J. B., Jr, Stellwagen E. The effect of proteolysis on the calmodulin activation of cyclic nucleotide phosphodiesterase. J Biol Chem. 1981 Sep 10;256(17):9051–9058. [PubMed] [Google Scholar]
  40. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  41. Vandermeers A., Vandermeers-Piret M. C., Rathe J., Christophe J. Purification and kinetic properties of two soluble forms of calmodulin-dependent cyclic nucleotide phosphodiesterase from rat pancreas. Biochem J. 1983 May 1;211(2):341–347. doi: 10.1042/bj2110341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wells J. N., Baird C. E., Hardman Y. J., Wu J. G. Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim Biophys Acta. 1975 Apr 19;384(2):430–442. doi: 10.1016/0005-2744(75)90044-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES