Abstract
The pH-dependence of antagonist and agonist binding to rat heart muscarinic receptors was investigated at 25 degrees C, in the absence and in the presence of GTP. The small inhibitory effect observed at the lowest pH investigated (pH 6.0) on [N-methyl-3H]methscopolamine chloride and [methyl-3H]oxotremorine-M acetate binding indicated that one or more amino acid residues of the receptor had to be deprotonated for optimal binding affinity. The low pK value of these residues (between 5 and 6) prevented their identification. The binding of scopolamine (pK 7.6) was favoured by a positive charge in the titratable amine, but binding with a lower affinity remained possible charge in the titratable amine, but binding with a lower affinity remained possible without this charge. GTP did not affect antagonist binding at any pH, but converted more than 90% of agonist binding sites into a low affinity conformation. In the absence of GTP, we observed a time- and pH-dependent conversion of the super-high- and high-affinity receptors to a low-affinity GTP-insensitive state. This conversion was markedly accelerated at high pH (above pH 8.0). In the presence of GTP, a positive charge on the titratable amine of pilocarpine (pK 7.05) and oxotremorine (pK 8.60) was required for binding. These results support the view that antagonist (e.g. methscopolamine) binding to receptors was largely facilitated by hydrophobic interactions, whereas agonist binding to low-affinity sites was mainly driven by ionic interactions.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berrie C. P., Birdsall N. J., Burgen A. S., Hulme E. C. Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1000–1005. doi: 10.1016/s0006-291x(79)80006-6. [DOI] [PubMed] [Google Scholar]
- Birdsall N. J., Burgen A. S., Hulme E. C. The binding of agonists to brain muscarinic receptors. Mol Pharmacol. 1978 Sep;14(5):723–736. [PubMed] [Google Scholar]
- Cavey D., Vincent J. P., Làzdunski M. The muscarinic receptor of heart cell membranes. Association with agonists, antagonists and antiarrhythmic agents. FEBS Lett. 1977 Dec 1;84(1):110–114. doi: 10.1016/0014-5793(77)81068-5. [DOI] [PubMed] [Google Scholar]
- Cremer J. E., Braun L. D., Oldendorf W. H. Changes during development in transport processes of the blood-brain barrier. Biochim Biophys Acta. 1976 Nov 2;448(4):633–637. doi: 10.1016/0005-2736(76)90120-6. [DOI] [PubMed] [Google Scholar]
- Fields J. Z., Roeske W. R., Morkin E., Yamamura H. I. Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J Biol Chem. 1978 May 10;253(9):3251–3258. [PubMed] [Google Scholar]
- Gurwitz D., Sokolovsky M. Induced interconversion of agonist affinity states in muscarinic receptor from mice brain: effects of temperature and sugars. Biochem Biophys Res Commun. 1980 May 30;94(2):493–500. doi: 10.1016/0006-291x(80)91258-9. [DOI] [PubMed] [Google Scholar]
- Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito T., Quastel J. H. Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem J. 1970 Feb;116(4):641–655. doi: 10.1042/bj1160641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klee C. B., Sokoloff L. Changes in D(--)-beta-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem. 1967 Sep 10;242(17):3880–3883. [PubMed] [Google Scholar]
- Kozak L. P. The transition from embryonic to adult isozyme expression in reaggregating cell cultures of mouse brain. Dev Biol. 1977 Jan;55(1):160–169. doi: 10.1016/0012-1606(77)90327-x. [DOI] [PubMed] [Google Scholar]
- Lavau M., Fornari V., Hashim S. A. Keytone metabolism in brain slices from rats with diet induced hyperketonemia. J Nutr. 1978 Apr;108(4):621–629. doi: 10.1093/jn/108.4.621. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Uchida S., Takeyasu K., Higuchi H., Yoshida H. Effects of trypsin-treatment on agonist binding affinity to the muscarinic acetylcholine receptor. Life Sci. 1982 Jul 19;31(3):211–220. doi: 10.1016/0024-3205(82)90580-x. [DOI] [PubMed] [Google Scholar]
- Middleton B. The acetoacetyl-coenzyme A thiolases of rat brain and their relative activities during postnatal development. Biochem J. 1973 Apr;132(4):731–737. doi: 10.1042/bj1320731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore T. J., Lione A. P., Sugden M. C., Regen D. M. Beta-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol. 1976 Mar;230(3):619–630. doi: 10.1152/ajplegacy.1976.230.3.619. [DOI] [PubMed] [Google Scholar]
- Page M. A., Krebs H. A., Williamson D. H. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem J. 1971 Jan;121(1):49–53. doi: 10.1042/bj1210049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel M. S., Owen O. E. Development and regulation of lipid synthesis from ketone bodies by rat brain. J Neurochem. 1977 Jan;28(1):109–114. doi: 10.1111/j.1471-4159.1977.tb07715.x. [DOI] [PubMed] [Google Scholar]
- Patel M. S., Russell J. J., Gershman H. Ketone-body metabolism in glioma and neuroblastoma cells. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7214–7218. doi: 10.1073/pnas.78.11.7214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel T. B., Clark J. B. Lipogenesis in the brain of suckling rats. Studies on the mechansim of mitochondrial-cytosolic carbon transfer. Biochem J. 1980 Apr 15;188(1):163–168. doi: 10.1042/bj1880163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pleasure D., Lichtman C., Eastman S., Lieb M., Abramsky O., Silberberg D. Acetoacetate and D-(-)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: extramitochondrial pathway for acetoacetate metabolism. J Neurochem. 1979 May;32(5):1447–1450. doi: 10.1111/j.1471-4159.1979.tb11083.x. [DOI] [PubMed] [Google Scholar]
- Pollay M., Stevens F. A. Starvation-induced changes in transport of ketone bodies across the blood-brain barrier. J Neurosci Res. 1980;5(2):163–172. doi: 10.1002/jnr.490050208. [DOI] [PubMed] [Google Scholar]
- Robinson A. M., Williamson D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980 Jan;60(1):143–187. doi: 10.1152/physrev.1980.60.1.143. [DOI] [PubMed] [Google Scholar]
- Roeder L. M., Poduslo S. E., Tildon J. T. Utilization of ketone bodies and glucose by established neural cell lines. J Neurosci Res. 1982;8(4):671–682. doi: 10.1002/jnr.490080412. [DOI] [PubMed] [Google Scholar]
- Schmidt G. L. Development of biochemical activities associated with myelination in chick brain aggregate cultures. Brain Res. 1975 Apr 4;87(1):110–113. doi: 10.1016/0006-8993(75)90789-1. [DOI] [PubMed] [Google Scholar]
- Seeds N. W. Biochemical differentiation in reaggregating brain cell culture. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1858–1861. doi: 10.1073/pnas.68.8.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder F. F., Drummond G. I. Activation and stabilization of cardiac adenylate cyclase by GTP analog and fluoride. Arch Biochem Biophys. 1978 Jan 15;185(1):116–125. doi: 10.1016/0003-9861(78)90150-9. [DOI] [PubMed] [Google Scholar]
- Tildon J. T., Cone A. L., Cornblath M. Coenzyme A transferase activity in rat brain. Biochem Biophys Res Commun. 1971 Apr 2;43(1):225–231. doi: 10.1016/s0006-291x(71)80111-0. [DOI] [PubMed] [Google Scholar]
- Tildon J. T., Roeder L. M. Glycerol oxidation in rat brain: subcellular localization and kinetic characteristics. J Neurosci Res. 1980;5(1):7–17. doi: 10.1002/jnr.490050103. [DOI] [PubMed] [Google Scholar]
- Waelbroeck M., Robberecht P., Chatelain P., Christophe J. Rat cardiac muscarinic receptors. I. Effects of guanine nucleotides on high- and low-affinity binding sites. Mol Pharmacol. 1982 May;21(3):581–588. [PubMed] [Google Scholar]
- Waelbroeck M. The pH dependence of insulin binding. A quantitative study. J Biol Chem. 1982 Jul 25;257(14):8284–8291. [PubMed] [Google Scholar]
- Webber R. J., Edmond J. Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat. J Biol Chem. 1977 Aug 10;252(15):5222–5226. [PubMed] [Google Scholar]
- Wei J. W., Sulakhe P. V. Properties of the muscarinic cholinergic receptors in rat atrium. Naunyn Schmiedebergs Arch Pharmacol. 1979 Nov;309(3):259–269. doi: 10.1007/BF00504759. [DOI] [PubMed] [Google Scholar]
- Wiesmann U. N., Hofmann K., Burkhart T., Herschkowitz N. Dissociated cultures of newborn mouse brain. I. Metabolism of sulfated lipids and mucopolysaccharides. Neurobiology. 1975 Dec;5(6):305–315. [PubMed] [Google Scholar]
- Yeh Y. Y., Streuli V. L., Zee P. Ketone bodies serve as important precursors of brain lipids in the developing rat. Lipids. 1977 Nov;12(11):957–964. doi: 10.1007/BF02533318. [DOI] [PubMed] [Google Scholar]
