Abstract
Adult male rats, under starving and normal conditions, were injected intravenously with N-acetyl[3H]mannosamine and after various time intervals the specific radioactivities of free N-acetylneuraminic acid (NeuAc) and CMP-N-acetylneuraminic acid were determined in the liver. The specific radioactivity of free NeuAc was high even within 20s after injection; the maximum was reached between 7 and 10 min. The specific radioactivity of CMP-NeuAc showed a lag phase of approx. 1 min. Thereafter it increased quickly and rose above the specific radioactivity of free NeuAc, reaching a maximum about 20 min after injection. These results point to a channelling of the newly synthesized NeuAc molecules into a special compartment, from which they are preferentially used by the enzyme CMP-sialic acid synthetase. It is suggested that the cytosolic enzyme N-acetylneuraminic acid 9-phosphate phosphatase is working in concert with the nuclear localized enzyme CMP-N-acetylneuraminic acid synthetase. Incorporation of radioactive sialic acid into sialoglycoproteins in liver occurred 2 min after injection, and after 10 min bound radioactivity began to appear in the circulation, indicating a transport time of 8 min of sialoglycoproteins from the point of attachment of sialic acid to the point of excretion.
Full text
PDF![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/9918e691d410/biochemj00339-0092.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/f8f45e1134e2/biochemj00339-0093.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/c117d5e1b531/biochemj00339-0094.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/4d7fdb18e620/biochemj00339-0095.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/efa284a789b2/biochemj00339-0096.png)
![92](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfd/1152473/4c0fc574c7df/biochemj00339-0097.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bates C. J., Adams W. R., Handschumacher R. E. Control of the formation of uridine diphospho-N-acetyl-hexosamine and glycoprotein synthesis in rat liver. J Biol Chem. 1966 Apr 25;241(8):1705–1712. [PubMed] [Google Scholar]
- Bergh M. L., Koppen P., van den Eijnden D. H. High-pressure liquid chromatography of sialic acid-containing oligosaccharides. Carbohydr Res. 1981 Aug 1;94(2):225–229. doi: 10.1016/s0008-6215(00)80720-x. [DOI] [PubMed] [Google Scholar]
- Buscher H. P., Casals-Stenzel J., Schauer R., Mestres-Ventura P. Biosynthesis of N-glycolylneuraminic acid in porcine submandibular glands. Subcellular site of hydroxylation of N-acetylneuraminic acid in the course of glycoprotein biosynthesis. Eur J Biochem. 1977 Jul 15;77(2):297–310. doi: 10.1111/j.1432-1033.1977.tb11668.x. [DOI] [PubMed] [Google Scholar]
- Carey D. J., Hirschberg C. B. Topography of sialoglycoproteins and sialyltransferases in mouse and rat liver Golgi. J Biol Chem. 1981 Jan 25;256(2):989–993. [PubMed] [Google Scholar]
- Carey D. J., Sommers L. W., Hirschberg C. B. CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes. Cell. 1980 Mar;19(3):597–605. doi: 10.1016/s0092-8674(80)80036-5. [DOI] [PubMed] [Google Scholar]
- Coates S. W., Gurney T., Jr, Sommers L. W., Yeh M., Hirschberg C. B. Subcellular localization of sugar nucleotide synthetases. J Biol Chem. 1980 Oct 10;255(19):9225–9229. [PubMed] [Google Scholar]
- Corfield A. P., Ferreira do Amaral C., Wember M., Schauer R. The metabolism of O-acyl-N-acylneuraminic acids. Biosynthesis of O-acylated sialic acids in bovine and equine submandibular glands. Eur J Biochem. 1976 Sep 15;68(2):597–610. doi: 10.1111/j.1432-1033.1976.tb10848.x. [DOI] [PubMed] [Google Scholar]
- Ferwerda W., Blok C. M., Heijlman J. Turnover of free sialic acid, CMP-sialic acid, and bound sialic acid in rat brain. J Neurochem. 1981 Apr;36(4):1492–1499. doi: 10.1111/j.1471-4159.1981.tb00591.x. [DOI] [PubMed] [Google Scholar]
- Gielen W., Schaper R., Pink H. Die subzelluläre Anordnung und die Aktivität der Cytidinmonophosphat-N-acetylneuraminat-Synthetase im jungen Rattengehirn. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1291–1296. [PubMed] [Google Scholar]
- Gielen W., Schaper R., Pink H. Neuraminidase und Cytidinmonophosphat-N-acetylneuraminat-Synthetase in Rinderleukozyten. Hoppe Seylers Z Physiol Chem. 1970 Jun;351(6):768–770. [PubMed] [Google Scholar]
- Hanover J. A., Lennarz W. J. Transmembrane assembly of membrane and secretory glycoproteins. Arch Biochem Biophys. 1981 Oct 1;211(1):1–19. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
- Harms E., Kreisel W., Morris H. P., Reutter W. Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. Eur J Biochem. 1973 Jan 15;32(2):254–262. doi: 10.1111/j.1432-1033.1973.tb02605.x. [DOI] [PubMed] [Google Scholar]
- Harms E., Reutter W. Half-life of N-acetylneuraminic acid in plasma membranes of rat liver and Morris hepatoma 7777. Cancer Res. 1974 Dec;34(12):3165–3172. [PubMed] [Google Scholar]
- Irwin L. N., Mancini J., Hills D. Sialidase activity against endogenous substrate in rat brain. Brain Res. 1973 Apr 27;53(2):488–491. doi: 10.1016/0006-8993(73)90239-4. [DOI] [PubMed] [Google Scholar]
- Kean E. L., Bighouse K. J. Cytidine 5'-monophosphosialic acid hydrolase. Subcellular location and properties. J Biol Chem. 1974 Dec 25;249(24):7813–7823. [PubMed] [Google Scholar]
- Kean E. L. Nuclear cytidine 5'-monophosphosialic acid synthetase. J Biol Chem. 1970 May 10;245(9):2301–2308. [PubMed] [Google Scholar]
- MOLNAR J., ROBINSON G. B., WINZLER R. J. THE BIOSYNTHESIS OF GLYCOPROTEINS. 3. GLUCOSAMINE INTERMEDIATES IN PLASMA GLYCOPROTEIN SYNTHESIS IN LIVERS OF PUROMYCIN-TREATED RATS. J Biol Chem. 1964 Oct;239:3157–3162. [PubMed] [Google Scholar]
- Schachter H. The subcellular sites of glycosylation. Biochem Soc Symp. 1974;(40):57–71. [PubMed] [Google Scholar]
- Schreiber G., Dryburgh H., Millership A., Matsuda Y., Inglis A., Phillips J., Edwards K., Maggs J. The synthesis and secretion of rat transferrin. J Biol Chem. 1979 Dec 10;254(23):12013–12019. [PubMed] [Google Scholar]
- Van Dijk W., Maier H., Van den Eijnden D. H. CMP-N-acetylneuraminic acid hydrolase, an ectoenzyme distributed unevenly over the hepatocyte surface. Biochim Biophys Acta. 1977 Apr 1;466(1):187–197. doi: 10.1016/0005-2736(77)90218-8. [DOI] [PubMed] [Google Scholar]
- Van Rinsum J., Van Dijk W., Hooghwinkel G. J., Ferwerda W. Subcellular localization and tissue distribution of sialic acid precursor-forming enzymes. Biochem J. 1983 Jan 15;210(1):21–28. doi: 10.1042/bj2100021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARREN L., FELSENFELD H. The biosynthesis of sialic acids. J Biol Chem. 1962 May;237:1421–1431. [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- Watson D. R., Jourdian G. W., Roseman S. The sialic acids. 8. Sialic acid 9-phosphate synthetase. J Biol Chem. 1966 Dec 10;241(23):5627–5636. [PubMed] [Google Scholar]
- van Dijk W., Ferwerda W., van den Eijnden D. H. Subcellular and regional distribution of CMP-N-acetylneuraminic acid synthetase in the calf kidney. Biochim Biophys Acta. 1973 Jul 5;315(1):162–175. doi: 10.1016/0005-2744(73)90139-3. [DOI] [PubMed] [Google Scholar]
- van Dijk W., Maier H., van den Eijnden D. H. Properties and subcellular localization of CMP-N-acetylneuraminic acid hydrolase of calf kidney. Biochim Biophys Acta. 1976 Oct 22;444(3):816–834. doi: 10.1016/0304-4165(76)90329-9. [DOI] [PubMed] [Google Scholar]
- van den Eijnden D. H. The subcellular localization of cytidine 5'-monophospho-N-acetylneuraminic acid synthetase in calf brain. J Neurochem. 1973 Oct;21(4):949–958. doi: 10.1111/j.1471-4159.1973.tb07539.x. [DOI] [PubMed] [Google Scholar]