Abstract
Membranes prepared from cultured fibroblasts were assayed for acyl-coenzyme A: cholesterol acyltransferase (ACAT) by a method that relied exclusively on the cholesterol already present on the membranes as the sterol substrate. Changes in membrane ACAT activity during incubation of fibroblasts under a variety of conditions were similar to the changes in the rate of incorporation of oleic acid into cholesteryl esters by the intact cells. The addition of low-density lipoprotein (LDL) to fibroblasts pre-incubated with lipoprotein-deficient serum led to a transient increase in membrane ACAT activity, which reached its peak after 7h and was related to the receptor-mediated uptake and degradation of the lipoprotein by the cells. However, after incubation of the membranes with a cholesterol-rich donor lipoprotein, which resulted in an equilibration of cholesterol between membranes and donor, each preparation exhibited the same activity. In contrast with these effects of LDL, incubation of the cells with non-esterified cholesterol produced a prolonged increase in ACAT activity and an increase in the activity observed after equilibration. Furthermore, ACAT activity in cells grown with linoleic acid was higher, both before and after the addition of LDL, than that of cells grown in normal medium or with palmitate. The increase in activity produced by LDL was also greater, reflecting the greater rate of degradation of LDL by the cells, and was associated with an increase in the activity observed after equilibration with donor. The results suggest that although fibroblasts can increase the amount of active enzyme on their membranes to accommodate an exceptionally high or prolonged supply of cholesterol, under normal circumstances the increase in membrane ACAT activity produced by LDL can be explained entirely by an increase in the amount of cholesterol in the substrate pool.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balasubramaniam S., Mitropoulos K. A., Venkatesan S. Rat-liver acyl-CoA: cholesterol acyltransferase. Eur J Biochem. 1978 Oct;90(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12614.x. [DOI] [PubMed] [Google Scholar]
- Balasubramaniam S., Venkatesan S., Mitropoulos K. A., Peters T. J. The submicrosomal localization of acyl-coenzyme A-cholesterol acyltransferase and its substrate, and of cholesteryl esters in rat liver. Biochem J. 1978 Sep 15;174(3):863–872. doi: 10.1042/bj1740863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Faust J. R., Goldstein J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J Clin Invest. 1975 Apr;55(4):783–793. doi: 10.1172/JCI107989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doolittle G. M., Chang T. Y. Acyl-CoA:cholesterol acyltransferase in Chinese hamster ovary cells. Enzyme activity determined after reconstitution in phospholipid/cholesterol liposomes. Biochim Biophys Acta. 1982 Dec 13;713(3):529–537. doi: 10.1016/0005-2760(82)90313-7. [DOI] [PubMed] [Google Scholar]
- Field F. J., Salome R. G. Effect of dietary fat saturation, cholesterol and cholestyramine on acyl-CoA: cholesterol acyltransferase activity in rabbit intestinal microsomes. Biochim Biophys Acta. 1982 Sep 14;712(3):557–570. doi: 10.1016/0005-2760(82)90284-3. [DOI] [PubMed] [Google Scholar]
- GOODMAN D. S., DEYKIN D., SHIRATORI T. THE FORMATION OF CHOLESTEROL ESTERS WITH RAT LIVER ENZYMES. J Biol Chem. 1964 May;239:1335–1345. [PubMed] [Google Scholar]
- Gavigan S. J., Knight B. L. Catabolism of low-density lipoprotein by fibroblasts cultured in medium supplemented with saturated or unsaturated free fatty acids. Biochim Biophys Acta. 1981 Sep 24;665(3):632–635. doi: 10.1016/0005-2760(81)90283-6. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Dana S. E., Brown M. S. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4288–4292. doi: 10.1073/pnas.71.11.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashimoto S., Dayton S. Stimulation of cholesterol esterification in hepatic microsomes by lipoproteins from normal and hypercholesterolemic rabbit serum. Biochim Biophys Acta. 1979 May 25;573(2):354–360. doi: 10.1016/0005-2760(79)90068-7. [DOI] [PubMed] [Google Scholar]
- Knight B. L., Soutar A. K. Degradation by cultured fibroblasts and macrophages of unmodified and 1,2-cyclohexanedione-modified low-density lipoprotein from normal and homozygous familial hypercholesterolaemic subjects. Biochem J. 1982 Jan 15;202(1):145–152. doi: 10.1042/bj2020145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ross R. George Lyman Duff Memorial Lecture. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis. 1981 Sep-Oct;1(5):293–311. doi: 10.1161/01.atv.1.5.293. [DOI] [PubMed] [Google Scholar]
- Spector A. A., Kaduce T. L., Dane R. W. Effect of dietary fat saturation on acylcoenzyme A:cholesterol acyltransferase activity of rat liver microsomes. J Lipid Res. 1980 Feb;21(2):169–179. [PubMed] [Google Scholar]
- Suckling K. E., Boyd G. S., Smellie C. G. Properties of a solubilised and reconstituted preparation of acyl-CoA:cholesterol acyltransferase from rat liver. Biochim Biophys Acta. 1982 Feb 15;710(2):154–163. doi: 10.1016/0005-2760(82)90145-x. [DOI] [PubMed] [Google Scholar]
