Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 15;216(1):129–136. doi: 10.1042/bj2160129

Fatty acids reverse the cyclic AMP inhibition of triacylglycerol and phosphatidylcholine synthesis in rat hepatocytes.

S L Pelech, P H Pritchard, D N Brindley, D E Vance
PMCID: PMC1152479  PMID: 6316933

Abstract

The influence of cyclic AMP analogues and fatty acids on glycerolipid biosynthesis in monolayer cultures of rat hepatocytes was investigated. Chlorophenylthio-cyclic AMP and adenosine 3':5'-cyclic phosphorothioate inhibited the rate of triacylglycerol synthesis from [1(3)-3H]glycerol, and phosphatidylcholine synthesis from [Me-3H]-choline. Supplementation of the hepatocytes with palmitate (1 mM) reversed chlorophenylthio-cyclic AMP inhibition of triacylglycerol synthesis. Similarly, cyclic AMP analogue-inhibition of phosphatidylcholine synthesis was abolished when the cells were simultaneously incubated with oleate (3 mM). Reactivation of phosphatidylcholine synthesis in chlorophenylthio-cyclic AMP-supplemented cells with oleate was accompanied by conversion of CTP: phosphocholine cytidylyltransferase into the membrane-bound form, since these cells released the enzyme more slowly after treatment with digitonin. The opposing actions of cyclic AMP and fatty acids are discussed in relation to the regulation of glycerolipid biosynthesis during starvation, diabetes and stress.

Full text

PDF
129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berglund L., Björkhem I., Einarsson K. Apparent phosphorylation - dephosphorylation of soluble phosphatidic acid phosphatase in rat liver. Biochem Biophys Res Commun. 1982 Mar 15;105(1):288–295. doi: 10.1016/s0006-291x(82)80043-0. [DOI] [PubMed] [Google Scholar]
  2. Brindley D. N. Regulation of hepatic triacylglycerol synthesis and lipoprotein metabolism by glucocorticoids. Clin Sci (Lond) 1981 Aug;61(2):129–133. doi: 10.1042/cs0610129. [DOI] [PubMed] [Google Scholar]
  3. Castaño J. G., Alemany S., Nieto A., Mato J. M. Activation of phospholipid methyltransferase by glucagon in rat hepatocytes. J Biol Chem. 1980 Oct 10;255(19):9041–9043. [PubMed] [Google Scholar]
  4. Davis R. A., Engelhorn S. C., Pangburn S. H., Weinstein D. B., Steinberg D. Very low density lipoprotein synthesis and secretion by cultured rat hepatocytes. J Biol Chem. 1979 Mar 25;254(6):2010–2016. [PubMed] [Google Scholar]
  5. Debeer L. J., Beynen A. C., Mannaerts G. P., Geelen M. J. Lipolysis of hepatic triacylglycerol stores. FEBS Lett. 1982 Apr 19;140(2):159–164. doi: 10.1016/0014-5793(82)80884-3. [DOI] [PubMed] [Google Scholar]
  6. Declercq P. E., Debeer L. J., Mannaerts G. P. Glucagon inhibits triacylglycerol synthesis in isolated hepatocytes by lowering their glycerol 3-phosphate content. Biochem J. 1982 Mar 15;202(3):803–806. doi: 10.1042/bj2020803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drummond G. I., Powell C. A. Analogues of adenosine 3',-5'-cyclic phosphate as activators of phosphorylase b kinase and as substrates for cyclic 3',5'-nucleotide phosphodiesterase. Mol Pharmacol. 1970 Jan;6(1):24–30. [PubMed] [Google Scholar]
  8. Geelen M. J., Groener J. E., De Haas C. G., Van Golde L. M. Influence of glucagon on the synthesis of phosphatidylcholines and phosphatidylethanolamines in monolayer cultures of rat hepatocytes. FEBS Lett. 1979 Sep 1;105(1):27–30. doi: 10.1016/0014-5793(79)80880-7. [DOI] [PubMed] [Google Scholar]
  9. Geelen M. J., Groener J. E., de Haas C. G., Wisserhof T. A., van Golde L. M. Influence of insulin and glucagon on the synthesis of glycerolipids in rat hepatocytes. FEBS Lett. 1978 Jun 1;90(1):57–60. doi: 10.1016/0014-5793(78)80297-x. [DOI] [PubMed] [Google Scholar]
  10. Geelen M. J., Harris R. A., Beynen A. C., McCune S. A. Short-term hormonal control of hepatic lipogenesis. Diabetes. 1980 Dec;29(12):1006–1022. doi: 10.2337/diab.29.12.1006. [DOI] [PubMed] [Google Scholar]
  11. Haagsman H. P., Van Golde L. M. Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: role of diacylglycerol acyltransferase. Arch Biochem Biophys. 1981 May;208(2):395–402. doi: 10.1016/0003-9861(81)90524-5. [DOI] [PubMed] [Google Scholar]
  12. Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
  13. Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver: a decrease in diacylglycerol acyltransferase activity after treatment of isolated rat hepatocytes with glucagon. Biochim Biophys Acta. 1981 Apr 23;664(1):74–81. doi: 10.1016/0005-2760(81)90029-1. [DOI] [PubMed] [Google Scholar]
  14. Holub B. J. Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes. J Biol Chem. 1978 Feb 10;253(3):691–696. [PubMed] [Google Scholar]
  15. Lawson N., Jennings R. J., Fears R., Brindley D. N. Antagonistic effects of insulin on the corticosterone-induced increase of phosphatidate phosphohydrolase activity in isolated rat hepatocytes. FEBS Lett. 1982 Jun 21;143(1):9–12. doi: 10.1016/0014-5793(82)80261-5. [DOI] [PubMed] [Google Scholar]
  16. Mackall J., Meredith M., Lane M. D. A mild procedure for the rapid release of cytoplasmic enzymes from cultured animal cells. Anal Biochem. 1979 May;95(1):270–274. doi: 10.1016/0003-2697(79)90216-1. [DOI] [PubMed] [Google Scholar]
  17. McGarry J. D., Foster D. W. In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. J Biol Chem. 1979 Sep 10;254(17):8163–8168. [PubMed] [Google Scholar]
  18. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  19. Miller J. P., Beck A. H., Simon L. N., Meyer R. B., Jr Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1975 Jan 25;250(2):426–431. [PubMed] [Google Scholar]
  20. Morimoto K., Kanoh H. Acyl chain length dependency of diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase. Effect of different saturated fatty acids at the C-1 or C-2 position of diacylglycerol on solubilized rat liver microsomal enzymes. J Biol Chem. 1978 Jul 25;253(14):5056–5060. [PubMed] [Google Scholar]
  21. Nilsson S., Scherstén T. Synthesis of phospholipids and triglycerides in human liver slices. I. Experimental conditions and the synthesis rate in normal liver tissue. Scand J Clin Lab Invest. 1969 Oct;24(3):237–249. doi: 10.3109/00365516909080159. [DOI] [PubMed] [Google Scholar]
  22. Pelech S. L., Pritchard P. H., Brindley D. N., Vance D. E. Fatty acids promote translocation of CTP:phosphocholine cytidylyltransferase to the endoplasmic reticulum and stimulate rat hepatic phosphatidylcholine synthesis. J Biol Chem. 1983 Jun 10;258(11):6782–6788. [PubMed] [Google Scholar]
  23. Pelech S. L., Pritchard P. H., Vance D. E. cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat hepatocytes. J Biol Chem. 1981 Aug 25;256(16):8283–8286. [PubMed] [Google Scholar]
  24. Pelech S. L., Vance D. E. Regulation of rat liver cytosolic CTP: phosphocholine cytidylyltransferase by phosphorylation and dephosphorylation. J Biol Chem. 1982 Dec 10;257(23):14198–14202. [PubMed] [Google Scholar]
  25. Pritchard P. H., Chiang P. K., Cantoni G. L., Vance D. E. Inhibition of phosphatidylethanolamine N-methylation by 3-deazaadenosine stimulates the synthesis of phosphatidylcholine via the CDP-choline pathway. J Biol Chem. 1982 Jun 10;257(11):6362–6367. [PubMed] [Google Scholar]
  26. Pritchard P. H., Pelech S. L., Vance D. E. Analogues of cyclic AMP inhibit phosphatidylethanolamine N-methylation by cultured rat hepatocytes. Biochim Biophys Acta. 1981 Nov 23;666(2):301–306. doi: 10.1016/0005-2760(81)90122-3. [DOI] [PubMed] [Google Scholar]
  27. Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem J. 1981 Apr 15;196(1):261–267. doi: 10.1042/bj1960261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. ROSE H., VAUGHAN M., STEINBERG D. UTILIZATION OF FATTY ACIDS BY RAT LIVER SLICES AS A FUNCTION OF MEDIUM CONCENTRATION. Am J Physiol. 1964 Feb;206:345–350. doi: 10.1152/ajplegacy.1964.206.2.345. [DOI] [PubMed] [Google Scholar]
  29. Schneider P. B. A sensitive radioenzymatic assay for glycerol and acylglycerols. J Lipid Res. 1977 May;18(3):396–399. [PubMed] [Google Scholar]
  30. Sleight R., Kent C. Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C. J Biol Chem. 1980 Nov 25;255(22):10644–10650. [PubMed] [Google Scholar]
  31. Sleight R., Kent C. Regulation of phosphatidylcholine biosynthesis in mammalian cells. II. Effects of phospholipase C treatment on the activity and subcellular distribution of CTP:phosphocholine cytidylyltransferase in Chinese hamster ovary and LM cell lines. J Biol Chem. 1983 Jan 25;258(2):831–835. [PubMed] [Google Scholar]
  32. Sleight R., Kent C. Regulation of phosphatidylcholine biosynthesis in mammalian cells. III. Effects of alterations in the phospholipid compositions of Chinese hamster ovary and LM cells on the activity and distribution of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1983 Jan 25;258(2):836–839. [PubMed] [Google Scholar]
  33. Soler-Argilaga C., Russell R. L., Heimberg M. Reciprocal relationship between uptake of Ca++ and biosynthesis of glycerolipids from sn-glycerol-3-phosphate by rat liver microsomes. Biochem Biophys Res Commun. 1977 Oct 10;78(3):1053–1059. doi: 10.1016/0006-291x(77)90527-7. [DOI] [PubMed] [Google Scholar]
  34. Sundler R., Akesson B., Nilsson A. Effect of different fatty acids on glycerolipid synthesis in isolated rat hepatocytes. J Biol Chem. 1974 Aug 25;249(16):5102–5107. [PubMed] [Google Scholar]
  35. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  36. Tubbs P. K., Garland P. B. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem J. 1964 Dec;93(3):550–557. doi: 10.1042/bj0930550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weinhold P. A., Feldman D. A., Quade M. M., Miller J. C., Brooks R. L. Evidence for a regulatory role of CTP : choline phosphate cytidylyltransferase in the synthesis of phosphatidylcholine in fetal lung following premature birth. Biochim Biophys Acta. 1981 Jul 24;665(1):134–144. doi: 10.1016/0005-2760(81)90241-1. [DOI] [PubMed] [Google Scholar]
  38. Zammit V. A. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats. Biochem J. 1981 Jul 15;198(1):75–83. doi: 10.1042/bj1980075. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES