Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 15;216(1):163–175. doi: 10.1042/bj2160163

Degradation of transplanted rat liver mitochondrial-outer-membrane proteins in hepatoma cells.

S M Russell, R J Mayer
PMCID: PMC1152483  PMID: 6651774

Abstract

Reductively [3H]methylated 3H mitochondrial-outer-membrane vesicles from rat liver and vesicles where monoamine oxidase has been derivatized irreversibly by [3H]-pargyline have been deliberately miscompartmentalized by heterologous transplantation into hepatoma (HTC) cells by poly(ethylene glycol)-mediated vesicle-cell fusion. Fluorescein-conjugated mitochondrial-outer-membrane vesicles have also been used to show that transplanted material is patched, capped and internalized. Reductively methylated outer-membrane proteins and monoamine oxidase are destroyed at the same rate (t1/2 24 h). Mitochondrial-outer-membrane proteins are not degraded at the same rate as HTC plasma-membrane proteins, endogenous cell protein, or endocytosed protein. Transplanted radiolabelled mitochondrial-outer-membrane proteins accumulate intracellularly in structures that are distinct from plasma membrane and lysosomes. However, when mitochondrial-outer-membrane vesicles derivatized with [14C]sucrose are transplanted, the acid-soluble degradation products accumulate in the lysosomal fraction. [14C]Sucrose-conjugated HTC cell plasma membrane accumulates in intracellular structures that are again distinct from plasma membrane and lysosomes. In contrast with the above observations, homologously transplanted mitochondrial-outer-membrane proteins from rat liver are destroyed in hepatocytes at rates that are remarkably similar (t1/2 60-70 h) to the rates in rat liver in vivo [Evans & Mayer (1982) Biochem. Biophys. Res. Commun. 107, 51-58].

Full text

PDF
163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aschenbrenner B., Druyan R., Albin R., Rabinowitz M. Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver. Biochem J. 1970 Sep;119(2):157–160. doi: 10.1042/bj1190157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Ballard F. J. Intracellular protein degradation. Essays Biochem. 1977;13:1–37. [PubMed] [Google Scholar]
  4. Baumann H., Doyle D. Turnover of plasma membrane glycoproteins and glycolipids of hepatoma tissue culture cells. J Biol Chem. 1978 Jun 25;253(12):4408–4418. [PubMed] [Google Scholar]
  5. Baumann H., Hou E., Doyle D. Insertion of biologically active membrane proteins from rat liver into the plasma membrane of mouse fibroblasts. J Biol Chem. 1980 Oct 25;255(20):10001–10012. [PubMed] [Google Scholar]
  6. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ben-Bassat H., Polliak A., Rosenbaum S. M., Naparstek E., Shouval D., Inbar M. Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias. Cancer Res. 1977 May;37(5):1307–1312. [PubMed] [Google Scholar]
  8. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  9. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cawthon R. M., Pintar J. E., Haseltine F. P., Breakefield X. O. Differences in the structure of A and B forms of human monoamine oxidase. J Neurochem. 1981 Aug;37(2):363–372. doi: 10.1111/j.1471-4159.1981.tb00464.x. [DOI] [PubMed] [Google Scholar]
  11. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dean R. T., Barrett A. J. Lysosomes. Essays Biochem. 1976;12:1–40. [PubMed] [Google Scholar]
  14. Dehlinger P. J., Schimke R. T. Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem. 1971 Apr 25;246(8):2574–2583. [PubMed] [Google Scholar]
  15. Dice J. F., Goldberg A. L. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3893–3897. doi: 10.1073/pnas.72.10.3893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doyle D., Hou E., Warren R. Transfer of the hepatocyte receptor for serum asialo-glycoproteins to the plasma membrane of a fibroblast. Acquisition of the hepatocyte receptor functions by mouse L-cells. J Biol Chem. 1979 Aug 10;254(15):6853–6856. [PubMed] [Google Scholar]
  17. Druyan R., DeBernard B., Rabinowitz M. Turnover of cytochromes labeled with delta-aminolevulinic acid-3H in rat liver. J Biol Chem. 1969 Nov 10;244(21):5874–5878. [PubMed] [Google Scholar]
  18. Eldridge C. A., Elson E. L., Webb W. W. Fluorescence photobleaching recovery measurements of surface lateral mobilities on normal and SV40-transformed mouse fibroblasts. Biochemistry. 1980 May 13;19(10):2075–2079. doi: 10.1021/bi00551a011. [DOI] [PubMed] [Google Scholar]
  19. Evans P. J., Mayer R. J. Organelle membrane-cell fusion: destruction of transplanted mitochondrial proteins in hepatocyte monolayers. Biochem Biophys Res Commun. 1982 Jul 16;107(1):51–58. doi: 10.1016/0006-291x(82)91668-0. [DOI] [PubMed] [Google Scholar]
  20. Hare J. F., Hodges R. Turnover of mitochondrial inner membrane proteins in hepatoma monolayer cultures. J Biol Chem. 1982 Apr 10;257(7):3575–3580. [PubMed] [Google Scholar]
  21. Ip M. M., Chee P. Y., Swick R. W. Turnover of hepatic mitochondrial ornithine aminotransferase and cytochrome oxidase using (14C)carbonate as tracer. Biochim Biophys Acta. 1974 Jun 20;354(1):29–38. doi: 10.1016/0304-4165(74)90049-x. [DOI] [PubMed] [Google Scholar]
  22. Jones S. W., Vidaver G. A. Labeling of pigeon erythrocyte membrane proteins by low-level reductive methylation. Anal Biochem. 1981 Nov 1;117(2):459–465. doi: 10.1016/0003-2697(81)90806-x. [DOI] [PubMed] [Google Scholar]
  23. KARNOVSKY M. L. Metabolic basis of phagocytic activity. Physiol Rev. 1962 Jan;42:143–168. doi: 10.1152/physrev.1962.42.1.143. [DOI] [PubMed] [Google Scholar]
  24. Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Leroy-Houyet M. A., Quintart J., Baudhuin P. Morphometry and characterization for endocytosis in exponentially growing hepatoma cells in culture. J Ultrastruct Res. 1979 Oct;69(1):68–85. doi: 10.1016/s0022-5320(79)80043-x. [DOI] [PubMed] [Google Scholar]
  28. Lopez-Saura P., Trouet A., Tulkens P. Analytical fractionation of cultured hepatoma cells (HTC cells). Biochim Biophys Acta. 1978 Nov 1;543(4):430–449. doi: 10.1016/0304-4165(78)90298-2. [DOI] [PubMed] [Google Scholar]
  29. Loyter A., Zakai N., Kulka R. G. "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion. J Cell Biol. 1975 Aug;66(2):292–304. doi: 10.1083/jcb.66.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martinez P., McCauley R. Studies on the flavins in rat liver mitochondrial outer membranes. Biochim Biophys Acta. 1977 Apr 27;497(2):437–446. doi: 10.1016/0304-4165(77)90201-x. [DOI] [PubMed] [Google Scholar]
  31. McDonald R. A., Gelehrter T. D. Glucocorticoid regulation of amino acid transport in anucleate rat hepatoma (HTC) cells. J Cell Biol. 1981 Mar;88(3):536–542. doi: 10.1083/jcb.88.3.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Means G. E. Reductive alkylation of amino groups. Methods Enzymol. 1977;47:469–478. doi: 10.1016/0076-6879(77)47047-2. [DOI] [PubMed] [Google Scholar]
  33. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pittman R. C., Green S. R., Attie A. D., Steinberg D. Radiolabeled sucrose covalently linked to protein. A device for quantifying degradation of plasma proteins catabolized by lysosomal mechanisms. J Biol Chem. 1979 Aug 10;254(15):6876–6879. [PubMed] [Google Scholar]
  35. Poste G., Papahadjopoulos D., Jacobson K., Vail W. J. Local anaesthetics increase susceptibility of untransformed cells to agglutination by concanavalin A. Nature. 1975 Feb 13;253(5492):552–554. doi: 10.1038/253552a0. [DOI] [PubMed] [Google Scholar]
  36. Poste G., Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1603–1607. doi: 10.1073/pnas.73.5.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Russell S. M., Burgess R. J., Mayer R. J. Protein degradation in rat liver during post-natal development. Biochem J. 1980 Oct 15;192(1):321–330. doi: 10.1042/bj1920321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Russell S. M., Burgess R. J., Mayer R. J. Protein degradation in rat liver. Evidence for populations of protein degradation rates in cellular organelles. Biochim Biophys Acta. 1982 Jan 12;714(1):34–45. doi: 10.1016/0304-4165(82)90124-6. [DOI] [PubMed] [Google Scholar]
  39. Ryser H. J. Uptake of protein by mammalian cells: an underdeveloped area. The penetration of foreign proteins into mammalian cells can be measured and their functions explored. Science. 1968 Jan 26;159(3813):390–396. doi: 10.1126/science.159.3813.390. [DOI] [PubMed] [Google Scholar]
  40. SELLINGER O. Z., BEAUFAY H., JACQUES P., DOYEN A., DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J. 1960 Mar;74:450–456. doi: 10.1042/bj0740450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. SWETT L. R., MARTIN W. B., TAYLOR J. D., EVERETT G. M., WYKES A. A., GLADISH Y. C. Structure-activity relations in the pargyline series. Ann N Y Acad Sci. 1963 Jul 8;107:891–898. doi: 10.1111/j.1749-6632.1963.tb13332.x. [DOI] [PubMed] [Google Scholar]
  42. Schlegel R. A., Rechsteiner M. C. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell. 1975 Aug;5(4):371–379. doi: 10.1016/0092-8674(75)90056-2. [DOI] [PubMed] [Google Scholar]
  43. Tack B. F., Dean J., Eilat D., Lorenz P. E., Schechter A. N. Tritium labeling of proteins to high specific radioactivity by reduction methylation. J Biol Chem. 1980 Sep 25;255(18):8842–8847. [PubMed] [Google Scholar]
  44. Tweto J., Friedman E., Doyle D. Proteins of the hepatoma tissue culture cell plasma membrane. J Supramol Struct. 1976;4(2):141–159. doi: 10.1002/jss.400040202. [DOI] [PubMed] [Google Scholar]
  45. Zavortink M., Thacher T., Rechsteiner M. Degradation of proteins microinjected into cultured mammalian cells. J Cell Physiol. 1979 Jul;100(1):175–185. doi: 10.1002/jcp.1041000118. [DOI] [PubMed] [Google Scholar]
  46. Zucker-Franklin D., Liebes L. F., Silber R. Differences in the behavior of the membrane and membrane-associated filamentous structures in normal and chronic lymphocytic leukemia (CLL) lymphocytes. J Immunol. 1979 Jan;122(1):97–107. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES