Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Oct 15;216(1):207–213. doi: 10.1042/bj2160207

Large effects of preparative techniques on lymphocyte cyclic AMP content.

J P Moore, G A Smith, T R Hesketh, J C Metcalfe
PMCID: PMC1152488  PMID: 6316936

Abstract

When a cell suspension is formed by disruption of a pig lymph node into medium, large and transient increases in intracellular cyclic AMP occur. Similar effects are observed when pig lymphocytes are centrifuged and the cell pellets resuspended, or when the cells are subjected to rapid temperature changes. These observations define the conditions required to manipulate the cells while maintaining a stable cyclic AMP concentration. Under these conditions, neither concanavalin A nor ionophore A23187 at mitogenic concentrations have any early effect on cyclic AMP in pig lymphocytes, but small increases in cyclic AMP (less than 2-fold) were observed at supramitogenic concentrations of concanavalin A (50 microgram/ml) or A23187 (500nM). Mouse thymocytes show qualitatively similar but much smaller changes in cyclic AMP concentration in response to experimental manipulations, and no response to mitogenic or supramitogenic concentrations of concanavalin A below the cytotoxic value.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Best L. C., Martin T. J., Russell R. G., Preston F. E. Prostacyclin increases cyclic AMP levels and adenylate cyclase activity in platelets. Nature. 1977 Jun 30;267(5614):850–852. doi: 10.1038/267850a0. [DOI] [PubMed] [Google Scholar]
  2. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coffey R. G., Hadden E. M., Hadden J. W. Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens. J Immunol. 1977 Oct;119(4):1387–1394. [PubMed] [Google Scholar]
  4. Felber S. M., Brand M. D. Factors determining the plasma-membrane potential of lymphocytes. Biochem J. 1982 May 15;204(2):577–585. doi: 10.1042/bj2040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hesketh T. R., Smith G. A., Houslay M. D., Warren G. B., Metcalfe J. C. Is an early calcium flux necessary to stimulate lymphocytes? Nature. 1977 Jun 9;267(5611):490–494. doi: 10.1038/267490a0. [DOI] [PubMed] [Google Scholar]
  6. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  7. Houslay M. D., Palmer R. W. Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation. Biochem J. 1978 Sep 15;174(3):909–919. doi: 10.1042/bj1740909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kobayashi M., Lust W. D., Passonneau J. V. Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J Neurochem. 1977 Jul;29(1):53–59. doi: 10.1111/j.1471-4159.1977.tb03923.x. [DOI] [PubMed] [Google Scholar]
  9. Kurokawa T., Kurokawa M., Ishibashi S. Anti-microtubular agents as inhibitors of desensitization to catecholamine stimulation of adenylate cyclase in Ehrlich ascites tumor cells. Biochim Biophys Acta. 1979 Apr 3;583(4):467–473. doi: 10.1016/0304-4165(79)90063-1. [DOI] [PubMed] [Google Scholar]
  10. Metcalfe J. C., Pozzan T., Smith G. A., Hesketh T. R. A calcium hypothesis for the control of cell growth. Biochem Soc Symp. 1980;45:1–26. [PubMed] [Google Scholar]
  11. Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes. J Biol Chem. 1982 Jul 25;257(14):8183–8189. [PubMed] [Google Scholar]
  12. Nordeen S. K., Young D. A. Refractoriness of the cyclic AMP response to adenosine and prostaglandin E1 in thymic lymphocytes. Dependence on protein synthesis and energy-providing substrates. J Biol Chem. 1978 Feb 25;253(4):1234–1239. [PubMed] [Google Scholar]
  13. Pozzan T., Corps A. N., Montecucco C., Hesketh T. R., Metcalfe J. C. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochim Biophys Acta. 1980 Nov 18;602(3):558–566. doi: 10.1016/0005-2736(80)90334-x. [DOI] [PubMed] [Google Scholar]
  14. Raff M. C., Hornby-Smith A., Brockes J. P. Cyclic AMP as a mitogenic signal for cultured rat Schwann cells. Nature. 1978 Jun 22;273(5664):672–673. doi: 10.1038/273672a0. [DOI] [PubMed] [Google Scholar]
  15. Rozengurt E., Legg A., Strang G., Courtenay-Luck N. Cyclic AMP: a mitogenic signal for Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4392–4396. doi: 10.1073/pnas.78.7.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sheppard H., Wiggan G., Tsien W. H. Structure-activity relationships for inhibitors of phosphodiesterase from erythrocytes and other tissues. Adv Cyclic Nucleotide Res. 1972;1:103–112. [PubMed] [Google Scholar]
  17. Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
  18. Wang T., Sheppard J. R., Foker J. E. Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis. Science. 1978 Jul 14;201(4351):155–157. doi: 10.1126/science.208147. [DOI] [PubMed] [Google Scholar]
  19. Watson J. The involvement of cyclic nucleotide metabolism in the initiation of lymphocyte proliferation induced by mitogens. J Immunol. 1976 Nov;117(5 Pt 1):1656–1663. [PubMed] [Google Scholar]
  20. Zick Y., Cesla R., Shaltiel S. Exposure of thymocytes to a low temperature (4 degrees C) inhibits the onset of their hormone-induced cellular refractoriness. J Biol Chem. 1982 Apr 25;257(8):4253–4259. [PubMed] [Google Scholar]
  21. Zick Y., Cesla R., Shaltiel S. Non-hormonal burst in the level of cAMP caused by a "temperature shock" to mouse thymocytes. FEBS Lett. 1978 Jun 15;90(2):239–242. doi: 10.1016/0014-5793(78)80376-7. [DOI] [PubMed] [Google Scholar]
  22. Zick Y., Cesla R., Shaltiel S. Viable mouse thymocytes as a model system for studying the onset of hormone-induced cellular refractoriness. Biochim Biophys Acta. 1983 Apr 5;762(2):355–365. doi: 10.1016/0167-4889(83)90090-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES