Abstract
Gel filtration with 1% agarose (Bio-Gel A-150m) separates polyribosomes bound to microsomal membranes from 'free' polyribosomes when these fractions are prepared by standard centrifugal techniques. However, when polyribosomes contained in an unfractionated postmitochondrial supernatant are run on an identical column, over 90% of the total polyribosomes are present as aggregates, designated 'membrane-cytomatrix', which are eluted in the column void volume. Polyribosomes are not released from these aggregates on removal of microsomal phospholipids by treatment of postmitochondrial supernatant with 1% Triton X-100, a neutral detergent. The aggregates are disrupted by the usual ultracentrifugation techniques used in subcellular fractionation. After treatment of membrane-cytomatrix with Triton X-100 to remove phospholipids and membrane proteins, 58% of the polyribosomes still remain associated with protein-containing complexes in the form of a cytomatrix and are not 'free'. Preparations of both membrane-cytomatrix and cytomatrix are capable of sustained protein synthesis. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that the cytoskeletal proteins actin and myosin are present in the cytomatrix. Incubation of cytomatrix preparations with the actin-depolymerizing agent deoxyribonuclease I caused release of the polyribosomes. Polyribosome release by deoxyribonuclease I was prevented by prior incubation with phalloidin, which is known to stabilize F-actin. Thus polyribosomes are associated with cytoskeletal elements in rat liver, and this association is dependent on polymeric forms of actin.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman M. R., Sabatini D. D., Blobel G. Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components. J Cell Biol. 1973 Jan;56(1):206–229. doi: 10.1083/jcb.56.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackburn P., Wilson G., Moore S. Ribonuclease inhibitor from human placenta. Purification and properties. J Biol Chem. 1977 Aug 25;252(16):5904–5910. [PubMed] [Google Scholar]
- Blikstad I., Carlsson L. On the dynamics of the microfilament system in HeLa cells. J Cell Biol. 1982 Apr;93(1):122–128. doi: 10.1083/jcb.93.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J Mol Biol. 1967 Jun 14;26(2):279–292. doi: 10.1016/0022-2836(67)90297-5. [DOI] [PubMed] [Google Scholar]
- Bont W. S., Geels J., Huizinga A., Mekkelholt K., Emmelot P. The influence of the physical state of microsomal membranes from rat liver on translational processes of polyribosomes. Biochim Biophys Acta. 1972 Apr 12;262(4):514–524. doi: 10.1016/0005-2787(72)90495-9. [DOI] [PubMed] [Google Scholar]
- Bronfman M., Beaufay H. Alteration of subcellular organelles induced by compression. FEBS Lett. 1973 Oct 15;36(2):163–168. doi: 10.1016/0014-5793(73)80360-6. [DOI] [PubMed] [Google Scholar]
- Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
- Cervera M., Dreyfuss G., Penman S. Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell. 1981 Jan;23(1):113–120. doi: 10.1016/0092-8674(81)90276-2. [DOI] [PubMed] [Google Scholar]
- Collot M., Wattiaux-De Coninck S., Wattiaux R. Deterioration of rat-liver mitochondria during isopycnic centrifugation in an isoosmotic medium. Eur J Biochem. 1975 Feb 21;51(2):603–608. doi: 10.1111/j.1432-1033.1975.tb03962.x. [DOI] [PubMed] [Google Scholar]
- Dancker P., Löw I., Hasselbach W., Wieland T. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta. 1975 Aug 19;400(2):407–414. doi: 10.1016/0005-2795(75)90196-8. [DOI] [PubMed] [Google Scholar]
- Fleck A., Begg D. The estimation of ribonucleic acid using ultraviolet absorption measurements. Biochim Biophys Acta. 1965 Nov 8;108(3):333–339. doi: 10.1016/0005-2787(65)90025-0. [DOI] [PubMed] [Google Scholar]
- Fulton A. B., Wan K. M., Penman S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell. 1980 Jul;20(3):849–857. doi: 10.1016/0092-8674(80)90331-1. [DOI] [PubMed] [Google Scholar]
- Gard D. L., Bell P. B., Lazarides E. Coexistence of desmin and the fibroblastic intermediate filament subunit in muscle and nonmuscle cells: identification and comparative peptide analysis. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3894–3898. doi: 10.1073/pnas.76.8.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govindan V. M., Rohr G., Wieland T., Agostini B. Binding of a phallotoxin to protein filaments of plasma membrane of liver cell. Hoppe Seylers Z Physiol Chem. 1973 Sep;354(9):1159–1161. [PubMed] [Google Scholar]
- Hitchcock S. E., Carisson L., Lindberg U. Depolymerization of F-actin by deoxyribonuclease I. Cell. 1976 Apr;7(4):531–542. doi: 10.1016/0092-8674(76)90203-8. [DOI] [PubMed] [Google Scholar]
- Ikkai T., Ooi T. The effects of pressure on F-G transformation of actin. Biochemistry. 1966 May;5(5):1551–1560. doi: 10.1021/bi00869a015. [DOI] [PubMed] [Google Scholar]
- Josephs R., Harrington W. F. An unusual pressure dependence for a reversibly associating protein system; sedimentation studies on myosin. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1587–1594. doi: 10.1073/pnas.58.4.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreibich G., Ulrich B. L., Sabatini D. D. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol. 1978 May;77(2):464–487. doi: 10.1083/jcb.77.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lengsfeld A. M., Löw I., Wieland T., Dancker P., Hasselbach W. Interaction of phalloidin with actin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2803–2807. doi: 10.1073/pnas.71.7.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
- Lewis J. A., Tata J. R. A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J Cell Sci. 1973 Sep;13(2):447–459. doi: 10.1242/jcs.13.2.447. [DOI] [PubMed] [Google Scholar]
- Maxwell I. H., Maxwell F., Hahn W. E. Removal of RNase activity from DNase by affinity chromatography on agarose coupled aminophenylphosphoryl-uridine-2' (3')-phosphate. Nucleic Acids Res. 1977 Jan;4(1):241–246. doi: 10.1093/nar/4.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCole N., Palmer D. N., Williams D. J. The separation of microsomal membranes and free polyribosomes by gel filtration. Biochem J. 1979 May 15;180(2):437–439. doi: 10.1042/bj1800437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh P. R., Clark R. P., Rabin B. R. Evidence that the temperature-dependent association of ribosomes with smooth microsomes determined by centrifugal separation may be an artefact. FEBS Lett. 1975 Dec 15;60(2):404–409. doi: 10.1016/0014-5793(75)80759-9. [DOI] [PubMed] [Google Scholar]
- McIntosh P. R., Clark R. P., Rabin B. R. Membrane-ribosome interactions: artefacts resulting from the temperature-dependent formation of ribosomal aggregates. FEBS Lett. 1975 Dec 1;60(1):190–196. doi: 10.1016/0014-5793(75)80449-2. [DOI] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Palmer D. N., Rabin B. R., Williams D. J. A sub-population of rat liver membrane-bound ribosomes that are detached in vitro by carcinogens and centrifugation. Biochem J. 1978 Oct 15;176(1):9–14. doi: 10.1042/bj1760009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragland W. L., Shires T. K., Pitot H. C. Polyribosomal attachment to rat liver and hepatoma endoplasmic reticulum in vitro. A method for its study. Biochem J. 1971 Jan;121(2):271–278. doi: 10.1042/bj1210271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramaekers F. C., Selten-Versteegen A. M., Benedetti E. L., Dunia I., Bloemendal H. In vitro synthesis of the major lens membrane protein. Proc Natl Acad Sci U S A. 1980 Feb;77(2):725–729. doi: 10.1073/pnas.77.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsey J. C., Steele W. J. Differences in size, structure and function of free and membrane-bound polyribosomes of rat liver. Evidence for a single class of membrane-bound polyribosomes. Biochem J. 1977 Oct 15;168(1):1–8. doi: 10.1042/bj1680001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P. DNase-I-dependent dissociation of erythrocyte cytoskeletons. J Cell Biol. 1979 Apr;81(1):266–270. doi: 10.1083/jcb.81.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore G. C., Tata J. R. Functions for polyribosome-membrane interactions in protein synthesis. Biochim Biophys Acta. 1977 Aug 9;472(2):197–236. doi: 10.1016/0304-4157(77)90017-x. [DOI] [PubMed] [Google Scholar]
- Tangen O., Jonsson J., Orrenius S. Isolation of rat liver microsomes by gel filtration. Anal Biochem. 1973 Aug;54(2):597–603. doi: 10.1016/0003-2697(73)90392-8. [DOI] [PubMed] [Google Scholar]
- Tsurgi K., Ogata K. Synthesis of ribosomal structural proteins by postmitochondrial supernatant from regenerating rat liver. J Biochem. 1976 May;79(5):883–893. doi: 10.1093/oxfordjournals.jbchem.a131156. [DOI] [PubMed] [Google Scholar]
- Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]
- Wattiaux R., Wattiaux-De Coninck S., Ronveaux-Dupal M. F. Deterioration of rat-liver mitochondria during centrifugation in a sucrose gradient. Eur J Biochem. 1971 Sep 13;22(1):31–39. doi: 10.1111/j.1432-1033.1971.tb01511.x. [DOI] [PubMed] [Google Scholar]
- Webster R. E., Henderson D., Osborn M., Weber K. Three-dimensional electron microscopical visualization of the cytoskeleton of animal cells: immunoferritin identification of actin- and tubulin-containing structures. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5511–5515. doi: 10.1073/pnas.75.11.5511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zauderer M., Liberti P., Baglioni C. Distribution of histone messenger RNA among free and membrane-associated polyribosomes of a mouse myeloma cell line. J Mol Biol. 1973 Sep 25;79(3):577–586. doi: 10.1016/0022-2836(73)90407-5. [DOI] [PubMed] [Google Scholar]
- de Oliveira Filgueiras O. M., Defize B., van Echteld C. J., van den Bosch H. Phosphatidylcholine mobility in bile salt depleted rat liver microsomes. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1801–1807. doi: 10.1016/s0006-291x(80)80108-2. [DOI] [PubMed] [Google Scholar]

