Abstract
The cyclic AMP and glycogen concentrations and the activities of phosphorylase kinase, phosphorylase a and glycogen synthase a were not different in livers from lean or ob/ob mice despite increased plasma glucose and insulin in the obese group. The liver water content was decreased by 10% in the obese mice. In hepatocytes isolated from lean mice and incubated with increasing glucose concentrations (14-112 mM), a sequential inactivation of phosphorylase and activation of glycogen synthase was observed. In hepatocytes from obese mice the inactivation of phosphorylase was not followed by an activation of synthase. The inactivation of phosphorylase occurred more rapidly and was followed by an activation of synthase in hepatocytes isolated from both groups of mice when in the incubation medium Na+ was replaced by K+ or when Ca2+ was omitted and 2.5 mM-EGTA included. The inactivation of phosphorylase and activation of synthase were not different in broken-liver-cell preparations from lean and obese animals. The re-activation of phosphorylase in liver filtrates in the presence of 0.1 microM-cyclic AMP and MgATP was inhibited by about 70% by EGTA and stimulated by Ca2+ and was always greater in preparations from ob/ob mice. The apparent paradox between the impairment of glycogen metabolism in isolated liver preparations and the situation in vivo in obese mice is discussed.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad Z., DePaoli-Roach A. A., Roach P. J. Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthase. J Biol Chem. 1982 Jul 25;257(14):8348–8355. [PubMed] [Google Scholar]
- Brand M. D., De Selincourt C. Effects of glucagon and Na+ on the control of extramitochondrial free Ca2+ concentration by mitochondrial from liver and heart. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1377–1382. doi: 10.1016/0006-291x(80)90438-6. [DOI] [PubMed] [Google Scholar]
- Bray G. A., York D. A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev. 1979 Jul;59(3):719–809. doi: 10.1152/physrev.1979.59.3.719. [DOI] [PubMed] [Google Scholar]
- Chrisman T. D., Jordan J. E., Exton J. H. Purification of rat liver phosphorylase kinase. J Biol Chem. 1982 Sep 25;257(18):10798–10804. [PubMed] [Google Scholar]
- Doorneweerd D. D., Tan A. W., Nuttall F. Q. Liver phosphorylase kinase: characterization of two interconvertible forms and partial purification of phosphorylase kinase a. Mol Cell Biochem. 1982 Aug 20;47(1):45–53. doi: 10.1007/BF00241565. [DOI] [PubMed] [Google Scholar]
- Doperé F., Stalmans W. Release and activation of phosphorylase phosphatase upon rupture of organelles from rat liver. Biochem Biophys Res Commun. 1982 Jan 29;104(2):443–450. doi: 10.1016/0006-291x(82)90657-x. [DOI] [PubMed] [Google Scholar]
- Dubuc P. U., Cahn P. J., Ristimaki S., Willis P. L. Starvation and age effects on glycoregulation and hormone levels of C57BL/6Job/ob mice. Horm Metab Res. 1982 Oct;14(10):532–535. doi: 10.1055/s-2007-1019069. [DOI] [PubMed] [Google Scholar]
- Elliott J., Hems D. A., Beloff-Chain A. Carbohydrate metabolism of the isolated perfused liver of normal and genetically obese--hyperglycaemic (ob-ob) mice. Biochem J. 1971 Dec;125(3):773–780. doi: 10.1042/bj1250773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser D. R., Trayhurn P. Mitochondrial Ca2+ transport in lean and genetically obese (ob/ob) mice. Biochem J. 1983 Jul 15;214(1):163–170. doi: 10.1042/bj2140163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstone T. P., Crompton M. Evidence for beta-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria. Biochem J. 1982 Apr 15;204(1):369–371. doi: 10.1042/bj2040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haworth R. A., Hunter D. R., Berkoff H. A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980 Feb 11;110(2):216–218. doi: 10.1016/0014-5793(80)80076-7. [DOI] [PubMed] [Google Scholar]
- Heffron J. J., Harris E. J. Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state. Biochem J. 1981 Mar 15;194(3):925–929. doi: 10.1042/bj1940925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., van de Werve G. Increased concentration of fructose 2,6-bisphosphate in livers of genetically obese mice. FEBS Lett. 1982 Aug 23;145(2):263–266. doi: 10.1016/0014-5793(82)80179-8. [DOI] [PubMed] [Google Scholar]
- Hughes B. P., Blackmore P. F., Exton J. H. Exploration of the role of sodium in the alpha-adrenergic regulation of hepatic glycogenolysis. FEBS Lett. 1980 Dec 1;121(2):260–264. doi: 10.1016/0014-5793(80)80357-7. [DOI] [PubMed] [Google Scholar]
- JUDAH J. D., AHMED K. Role of phospoproteins in ion transport: Interations of sodium with calcium and potassium in liver slices. Biochim Biophys Acta. 1963 Apr 2;71:34–44. doi: 10.1016/0006-3002(63)90982-x. [DOI] [PubMed] [Google Scholar]
- Kaplan M. L., Leveille G. A. Development of lipogenesis and insulin sensitivity in tissues of the ob/ob mouse. Am J Physiol. 1981 Feb;240(2):E101–E107. doi: 10.1152/ajpendo.1981.240.2.E101. [DOI] [PubMed] [Google Scholar]
- Karakash C., Assimacopoulos-Jeannet F., Jeanrenaud B. An anomaly of insulin removal in perfused livers of obese-hyperglycemic (ob/ob) mice. J Clin Invest. 1976 May;57(5):1117–1124. doi: 10.1172/JCI108378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khoo J. C., Steinberg D. Stimulation of rat liver phosphorylase kinase by micromolar concentrations of Ca2+. FEBS Lett. 1975 Sep 1;57(1):68–72. doi: 10.1016/0014-5793(75)80154-2. [DOI] [PubMed] [Google Scholar]
- Kreutner W., Springer S. C., Sherwood J. E. Resistance of gluconeogenic and glycogenic pathways in obese-hyperglycemic mice. Am J Physiol. 1975 Feb;228(2):663–671. doi: 10.1152/ajplegacy.1975.228.2.663. [DOI] [PubMed] [Google Scholar]
- Lavine R. L., Voyles N., Perrino P. V., Recant L. The effect of fasting on tissue cyclic cAMP and plasma glucagon in the obese hyperglycemic mouse. Endocrinology. 1975 Sep;97(3):615–620. doi: 10.1210/endo-97-3-615. [DOI] [PubMed] [Google Scholar]
- Ma G. Y., Gove C. D., Hems D. A. Effects of glucagon and insulin on fatty acid synthesis and glycogen degradation in the perfused liver of normal and genetically obese (ob/ob) mice. Biochem J. 1978 Sep 15;174(3):761–768. doi: 10.1042/bj1740761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
- Payne M. E., Schworer C. M., Soderling T. R. Purification and characterization of rabbit liver calmodulin-dependent glycogen synthase kinase. J Biol Chem. 1983 Feb 25;258(4):2376–2382. [PubMed] [Google Scholar]
- SHULL K. H., MAYER J. The turnover of liver glycogen in obese hyperglycemic mice. J Biol Chem. 1956 Feb;218(2):885–896. [PubMed] [Google Scholar]
- Sakai K., Matsumura S., Okimura Y., Yamamura H., Nishizuka Y. Liver glycogen phosphorylase kinase. Partial purification and characterization. J Biol Chem. 1979 Jul 25;254(14):6631–6637. [PubMed] [Google Scholar]
- Shimazu T., Amakawa A. Regulation of glycogen metabolism in liver by the autonomic nervous system. VI. Possible mechanism of phosphorylase activation by the splanchnic nerve. Biochim Biophys Acta. 1975 Apr 7;385(2):242–256. doi: 10.1016/0304-4165(75)90352-9. [DOI] [PubMed] [Google Scholar]
- Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Hers H. G. The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note on the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem. 1975 Jun;54(2):341–350. doi: 10.1111/j.1432-1033.1975.tb04144.x. [DOI] [PubMed] [Google Scholar]
- Stalmans W., de Wulf H., Hers H. G. The control of liver glycogen synthetase phosphatase by phosphorylase. Eur J Biochem. 1971 Feb;18(4):582–587. doi: 10.1111/j.1432-1033.1971.tb01279.x. [DOI] [PubMed] [Google Scholar]
- Van de Werve G., Van den Berghe G., Hers H. G. A simplified procedure for the assay of adenosine 3':5'-monophosphate by the activation of liver phosphorylase. Eur J Biochem. 1974 Jan 3;41(1):97–102. doi: 10.1111/j.1432-1033.1974.tb03248.x. [DOI] [PubMed] [Google Scholar]
- Vandenheede J. R., Keppens S., De Wulf H. Inactivation and reactivation of liver phosphorylase b kinase. Biochim Biophys Acta. 1977 Apr 12;481(2):463–470. doi: 10.1016/0005-2744(77)90279-0. [DOI] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
- Yang S. D., Vandenheede J. R., Goris J., Merlevede W. ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. I. Purification of the enzyme and its regulation by the interaction with an activating protein factor. J Biol Chem. 1980 Dec 25;255(24):11759–11767. [PubMed] [Google Scholar]
- Yen T. T., Stamm N. B. Constitutive hepatic glucokinase activity in db/db and ob/ob mice. Biochim Biophys Acta. 1981 Jan 15;657(1):195–202. doi: 10.1016/0005-2744(81)90143-1. [DOI] [PubMed] [Google Scholar]
- van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Werve G. Inhibition of liver glycogen synthase phosphatase by calcium: new evidence for an interaction between synthase activation and phosphorylase a. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1323–1329. doi: 10.1016/s0006-291x(81)80156-8. [DOI] [PubMed] [Google Scholar]
- van de Werve G. Isolation and characteristics of hepatocytes. Toxicology. 1980;18(3):179–185. doi: 10.1016/0300-483x(80)90062-1. [DOI] [PubMed] [Google Scholar]
