Abstract
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Annison E. F., Linzell J. L., West C. E. Mammary and whole animal metabolism of glucose and fatty acids in fasting lactating goats. J Physiol. 1968 Jul;197(2):445–459. doi: 10.1113/jphysiol.1968.sp008569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter M. A., Goheer M. A., Coore H. G. Effects of starvation, diabetes and 2-bromo-alpha-ergocryptine treatment on pyruvate dehydrogenase activity in lactating rat mammary gland. Biochem Soc Trans. 1978;6(5):968–970. doi: 10.1042/bst0060968. [DOI] [PubMed] [Google Scholar]
- Denton R. M., Randle P. J., Bridges B. J., Cooper R. H., Kerbey A. L., Pask H. T., Severson D. L., Stansbie D., Whitehouse S. Regulation of mammalian pyruvate dehydrogenase. Mol Cell Biochem. 1975 Oct 31;9(1):27–53. doi: 10.1007/BF01731731. [DOI] [PubMed] [Google Scholar]
- Féry F., Balasse E. O. Differential effects of sodium acetoacetate and acetoacetic acid infusions on alanine and glutamine metabolism in man. J Clin Invest. 1980 Aug;66(2):323–331. doi: 10.1172/JCI109860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins R. A., Williamson D. H. Measurements of substrate uptake by mammary gland of the rat. Biochem J. 1972 Oct;129(5):1171–1173. doi: 10.1042/bj1291171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedden M. P., Buse M. G. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis. Am J Physiol. 1982 Mar;242(3):E184–E192. doi: 10.1152/ajpendo.1982.242.3.E184. [DOI] [PubMed] [Google Scholar]
- Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
- Munday M. R., Williamson D. H. Role of pyruvate dehydrogenase and insulin in the regulation of lipogenesis in the lactating mammary gland of the rat during the starved-refed transition. Biochem J. 1981 Jun 15;196(3):831–837. doi: 10.1042/bj1960831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson A. M., Girard J. R., Williamson D. H. Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Measurements of lipogenesis in vivo and plasma hormone concentrations in response to starvation and refeeding. Biochem J. 1978 Oct 15;176(1):343–346. doi: 10.1042/bj1760343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson A. M., Williamson D. H. Effects of acetoacetate administration on glucose metabolism in mammary gland of fed lactating rats. Biochem J. 1977 Jun 15;164(3):749–752. doi: 10.1042/bj1640749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tischler M. E. Is regulation of proteolysis associated with redox-state changes in rat skeletal muscle? Biochem J. 1980 Dec 15;192(3):963–966. doi: 10.1042/bj1920963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viña J. R., Puertes I. R., Viña J. Effect of premature weaning on amino acid uptake by the mammary gland of lactating rats. Biochem J. 1981 Dec 15;200(3):705–708. doi: 10.1042/bj2000705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viña J., Puertes I. R., Estrela J. M., Viña J. R., Galbis J. L. Involvement of gamma-glutamyltransferase in amino-acid uptake by the lactating mammary gland of the rat. Biochem J. 1981 Jan 15;194(1):99–102. doi: 10.1042/bj1940099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viña J., Puertes I. R., Saez G. T., Viña J. R. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett. 1981 Apr 20;126(2):250–252. doi: 10.1016/0014-5793(81)80253-0. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]