Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Dec 15;216(3):529–536. doi: 10.1042/bj2160529

Role of Ca2+ for protein turnover in isolated rat hepatocytes.

B Grinde
PMCID: PMC1152542  PMID: 6199012

Abstract

Experiments with bivalent-cation chelators (EGTA and EDTA), a Ca2+ ionophore (A23187) and a Ca2+-channel blocker (verapamil) indicate that Ca2+ is required for the lysosomal degradation of endogenous protein in hepatocytes. A distinction is made between lysosomal and non-lysosomal degradation by using the lysosomotropic agent methylamine. As Ca2+ does not appear to be required for the lysosomal degradation of endocytosed asialo-fetuin, the Ca2+-dependence for the degradation of endogenous protein is probably connected with the formation of autophagic vacuoles or the fusion of autophagic vacuoles with lysosomes. EGTA and EDTA had a slight inhibitory effect on the non-lysosomal degradation. This effect could be due to the activity of non-lysosomal Ca2+-dependent thiol proteinases. Together with previous experiments with thiol-proteinase inhibitors, the present experiments indicate that these proteinases have a very limited impact on the bulk protein degradation in the isolated hepatocytes.

Full text

PDF
529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Brocher S. C. Role of lysosomes in protein turnover: catch-up proteolysis after release from NH4Cl inhibition. J Cell Physiol. 1980 Feb;102(2):259–266. doi: 10.1002/jcp.1041020217. [DOI] [PubMed] [Google Scholar]
  2. Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. J Biol Chem. 1977 Apr 25;252(8):2662–2669. [PubMed] [Google Scholar]
  3. Beer D. G., Hjelle J. J., Petersen D. R., Malkinson A. M. Calcium-activated proteolytic activity in rat liver mitochondria. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1276–1283. doi: 10.1016/0006-291x(82)91915-5. [DOI] [PubMed] [Google Scholar]
  4. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creutz C. E., Pollard H. B. A Cell-free Model for Protein-Lipid Interactions in Exocytosis: Aggregation and Fusion of Chromaffin Granules in the Presence of Calcium, Synexin, and CIS-Unsaturated Fatty Acids. Biophys J. 1982 Jan;37(1):119–120. doi: 10.1016/S0006-3495(82)84630-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Martino G. N. Calcium-dependent proteolytic activity in rat liver: identification of two proteases with different calcium requirements. Arch Biochem Biophys. 1981 Oct 1;211(1):253–257. doi: 10.1016/0003-9861(81)90452-5. [DOI] [PubMed] [Google Scholar]
  7. DeMartino G. N., Croall D. E. Calcium-dependent protease in neuroblastoma cells. J Neurochem. 1982 Jun;38(6):1642–1648. doi: 10.1111/j.1471-4159.1982.tb06645.x. [DOI] [PubMed] [Google Scholar]
  8. DeMartino G. N. Cytoplasmic proteases of rat liver parenchymal cells. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1325–1330. doi: 10.1016/0006-291x(82)92145-3. [DOI] [PubMed] [Google Scholar]
  9. Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
  10. Foden S., Randle P. J. Calcium metabolism in rat hepatocytes. Biochem J. 1978 Mar 15;170(3):615–625. doi: 10.1042/bj1700615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  12. Grinde B., Seglen P. O. Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Sep 17;632(1):73–86. doi: 10.1016/0304-4165(80)90250-0. [DOI] [PubMed] [Google Scholar]
  13. Grinde B., Seglen P. O. Role of microtubuli in the lysosomal degradation of endogenous and exogenous protein in isolated rat hepatocytes. Hoppe Seylers Z Physiol Chem. 1981 May;362(5):549–556. doi: 10.1515/bchm2.1981.362.1.549. [DOI] [PubMed] [Google Scholar]
  14. Grinde B. Selective inhibition of lysosomal protein degradation by the thiol proteinase inhibitors E-64, Ep-459 and Ep-457 in isolated rat hepatocytes. Biochim Biophys Acta. 1982 Mar 4;701(3):328–333. doi: 10.1016/0167-4838(82)90235-7. [DOI] [PubMed] [Google Scholar]
  15. Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
  16. Kimura S., Matsumoto T., Tada R., Ogata E., Abe K. Inhibition by calcium channel blockers of the glycogenolytic effect of glucagon in perfused rat liver. Acta Endocrinol (Copenh) 1982 Apr;99(4):559–566. doi: 10.1530/acta.0.0990559. [DOI] [PubMed] [Google Scholar]
  17. Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
  18. Kovács A. L., Grinde B., Seglen P. O. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res. 1981 Jun;133(2):431–436. doi: 10.1016/0014-4827(81)90336-0. [DOI] [PubMed] [Google Scholar]
  19. Kovács A. L., Seglen P. O. Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim Biophys Acta. 1981 Aug 17;676(2):213–220. doi: 10.1016/0304-4165(81)90189-6. [DOI] [PubMed] [Google Scholar]
  20. Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
  21. Rapoport S., Dubiel W., Müller M. Characteristics of an ATP-dependent proteolytic system of rat liver mitochondria. FEBS Lett. 1982 Oct 4;147(1):93–96. doi: 10.1016/0014-5793(82)81018-1. [DOI] [PubMed] [Google Scholar]
  22. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  23. Reinhart P. H., Taylor W. M., Bygrave F. L. Trifluoperazine, an inhibitor of calmodulin action, antagonises phenylephrine-induced metabolic responses and mitochondrial calcium fluxes in liver. FEBS Lett. 1980 Oct 20;120(1):71–74. doi: 10.1016/0014-5793(80)81049-0. [DOI] [PubMed] [Google Scholar]
  24. Seglen P. O. Effects of amino acids, ammonia and leupeptin on protein synthesis and degradation in isolated rat hepatocytes. Biochem J. 1978 Aug 15;174(2):469–474. doi: 10.1042/bj1740469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seglen P. O., Gordon P. B., Grinde B., Solheim A., Kovács A. L., Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger. 1981;40(10-11):1587–1598. [PubMed] [Google Scholar]
  26. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  27. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  28. Sugden P. H. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem J. 1980 Sep 15;190(3):593–603. doi: 10.1042/bj1900593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sugita H., Ishiura S., Suzuki K., Imahori K. Ca-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils. Muscle Nerve. 1980 Jul-Aug;3(4):335–339. doi: 10.1002/mus.880030410. [DOI] [PubMed] [Google Scholar]
  30. Tolleshaug H., Berg T., Nilsson M., Norum K. R. Uptake and degradation of 125I-labelled asialo-fetuin by isolated rat hepatocytes. Biochim Biophys Acta. 1977 Aug 25;499(1):73–84. doi: 10.1016/0304-4165(77)90230-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES