Skip to main content
ACS Omega logoLink to ACS Omega
. 2024 Oct 15;9(43):43288–43301. doi: 10.1021/acsomega.4c03802

Optical Applications of CuInSe2 Colloidal Quantum Dots

Song Chen 1, Bingqian Zu 1, Liang Wu 1,*
PMCID: PMC11525504  PMID: 39494032

Abstract

graphic file with name ao4c03802_0010.jpg

The distinctive chemical, physical, electrical, and optical properties of semiconductor quantum dots (QDs) make them a highly fascinating nanomaterial that has been extensively studied. The CuInSe2 (CIS) QDs demonstrates great potential as a nontoxic alternative to CdSe and PbSe QDs for realizing high-performance solution-processed semiconductor devices. The CIS QDs show strong light absorption and bright emission across the visible and infrared spectrum and have been designed to exhibit optical gain. The special characteristics of these properties are of great significance in the fields of solar energy conversion, display, and electronic devices. Here, we present a comprehensive overview of the potential applications of colloidal CIS QDs in various fields, with a particular focus on solar energy conversion (such as QD solar cells, QD-sensitized solar cells, and QD luminescence solar concentrators), solar-to-hydrogen production (such as photocatalytic and photoelectrochemical H2 production), and QD electronics (such as QD transistors, QD light-emitting diodes, and QD photodetectors). Furthermore, we offer our insights into the current challenges and future opportunities associated with CIS QDs for further research.

1. Introduction

The electronic and optical properties of bulk semiconductors are usually regulated via crystal structure, composition, and impurities. Nevertheless, the electron energy level transitions from quasi-continuous to discrete and confinement arises when the size of the semiconductor reaches a specific value known as the exciton Bohr radius. The quantum-confined semiconductors commonly exhibit size-dependent electronic and optical properties, which bring about extra degrees of tunability compared with bulk semiconductors. The quantum-confined materials can be classified into zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D), including quantum dots (QDs), quantum wires/rods, and quantum wells, respectively.13

The QD is a semiconductor nanostructure that binds excitons in three spatial directions. The QD is a significant low-dimensional semiconductor material, characterized by its dimensions in all three directions being no more than twice the excitonic Bohr radius of the corresponding semiconductor. Typically, QDs exhibit a spherical or quasi-spherical shape, with diameters ranging from 2 to 20 nm. In QDs, holes and electrons exhibit a discrete (quantized) and analogous density of states (DOS).46 The bandgap of QDs increases due to the quantum confinement, leading to a blue shift in both absorption and emission spectra.7 The excited electron exhibits a strong interaction with the remaining hole. The spin-exchange coupling and Coulomb attraction synergistically generate highly localized excitons (electron–hole pairs). The close proximity of charge carriers in QDs leads to heightened many-body phenomena that impact their optical and electronic properties.8

Importantly, colloidal quantum dots (CQDs) that are usually synthesized via wet-chemical approaches are solution-processed nanocrystals with diameters below 20 nm. Since the first report in the 1980s,9 numbers of semiconductor CQDs have been developed, such as groups II–VI,10 III–V,11 I–III–VI2,12 and I–II–III-VI.13 The CuInSe2 (CIS) CQDs among the I–III–VI QDs have garnered increasing attention due to its substantial exciton Bohr radius of ca. 10.6 nm, which facilitates the regulation of the energy bandgaps across a broad spectrum of light absorption ranging from ultraviolet to near-infrared regions.1416 Furthermore, the band structure related to composition and its special defect tolerance facilitate convenient tailoring of band alignment according to the practical applications.1719 The use of CIS QDs as a nontoxic alternative to CdSe and PbSe QDs has gained widespread popularity in the field of high-performance solution-processed semiconductor devices.17,2022

The use of CIS CQDs offers opportunities for the production of high-efficiency and flexible devices through large-area, low-temperature, solution-based approaches that replace costly high-temperature, high-vacuum device fabrication processes.2325 In this review, we examine the utilization of CIS CQDs in the development of solar energy conversion, displays, and electronic devices. We focus on their applications in QD solar cells, QD-sensitized solar cells (QDSSCs), QD luminescence solar concentrators (LSCs), photocatalytic and photoelectrochemical (PEC) H2 production, QD transistors, QD light-emitting diodes (LEDs), and QD photodetectors (Figure 1). Furthermore, we explore the emerging opportunities for CIS CQDs and discuss the challenges toward practical applications.

Figure 1.

Figure 1

Graphical illustration of some optical applications of CIS QDs.2633 Some of the subgraphics are reprinted in part with permission from the following: ref (26), copyright 2015 American Chemical Society; ref (27), copyright 2013 Taylor & Francis; ref (28), copyright 2023 American Chemical Society; ref (29), copyright 2018 The Optical Society; ref (30), copyright 2021 American Chemical Society; ref (31), copyright 2016 American Association for the Advancement of Science; ref (32), copyright 2017 Springer Nature; ref (33), copyright 2017 Springer Nature.

2. Optical Applications of CIS CQDs

2.1. QD Solar Cells

QD solar cells have attracted extensive interests as low-cost solution-processable alternative photovoltaic devices before the creation and rise of perovskite solar cells.3436 Compared with traditional thin-film-based perovskite solar cells, QD solar cells possess unique advantages. They are processable and compatible with greener solvents (e.g., octane, hexane, toluene, etc.).3739 Moreover, the compatibility of QDs with greener solvents is more important for large-scale industrial fabrication compared to perovskites.40 Additionally, the low-cost solution process is one of the most attractive particularities of QD solar cells as a substitute to silicon photovoltaics.12,41 With constant development, QD solar cells have reached 18.1% efficiency in 2020.34

The lead chalcogenide family (PbS and PbSe) had dominated the QD photovoltaic technology until the emergence of I–III–VI CQDs.24,42,43 The CIS CQDs incorporate several key features of binary metal chalcogenide QDs, including surface passivation by ligands and quantum confinement, while also possessing exceptional absorption properties similar to bulk CIS.16 CIS is a crucial material for photovoltaic devices, exhibiting the highest efficiency of over 20% specifically in thin film solar cells.44,45 However, the power conversion efficiency (PCE) of photovoltaic devices fabricated from ink-deposited CIS CQDs is just over 3%, astricted by poor charge transport.42,46,47 Typically, ink-deposited CQDs are sintered into polycrystalline films by annealing under selenium vapor at high temperature (>500 °C) to achieve much higher efficiencies.48,49 Korgel and coauthors reported a nanocrystal film processing technique—photonic curing—to replace high-temperature selenization to improve charge transport in the QD films (Figure 2a).43 The photovoltaic devices were fabricated by spray deposition of CIS CQD toluene dispersions on Au-coated glass substrates. Then, the QD films were cured with a PluseForge 3300 tool in a closed chamber with a quartz window using pulsed light from a xenon flash lamp.

Figure 2.

Figure 2

(a) Schematic illustration the removing OLA from the CIS nanocrystal film via photonic curing. (b,c) Current–voltage curves of devices made with the CIS CQDs before and after photonic curing with 2.2 J/cm2 pulse fluence. (d) EQE measurements for CIS QD devices under white light bias (50 mW/cm2) before (black curve) and after (red curve) photonic curing with 2.2 J/cm2 pulse fluence.43 Reproduced with permission from ref (43). Copyright 2013 American Chemical Society.

Although the CIS QD films are cured with a 2.2 J/cm2 pulse fluence, the photovoltaic devices fabricated with these cured QDs exhibited unsatisfactory performance. As shown in Figure 2b,c, the PCE of the photovoltaic devices fabricated with cured QDs is 1.25%, which is similar to that of the devices fabricated with CQDs without photocuring (1.19%). However, the devices exhibit a noticeable decrease in the open-circuit voltage and a significant enhancement in the short-circuit current after undergoing photonic curing. External quantum efficiency (EQE) characterizations revealed that the predominant increase in short-circuit current occurred within the short wavelength range (<600 nm). Due to the extraction of multiexcitons, the peak EQE of the devices fabricated with cured QDs reached 123%, which is much higher than that of the CIS QD solar cells without photonic curing.

2.2. QD Luminescent Solar Concentrators

The utilization of solar power generation presents an efficient solution to addressing the energy crisis. The primary strategies for cost reduction in solar electricity involve enhancing the efficiencies of solar cells and optimizing manufacturing and installation processes to minimize expenses. Utilizing cheap, large-area solar radiation collectors based on the LSCs technology presents a promising opportunity to lower the price of solar energy.5052 LSCs are constructed with a slab of an transparent material containing highly emissive fluorophores, such as CQDs (Figure 3a).53 These LSCs can be integrated with Si-solar cells in edge as well as used as semitransparent “solar windows”.54,55 The fluorophores absorb the solar photons and subsequently emit at longer wavelengths, which are then waveguided to the Si-solar cells located at the edges to generate electricity. Moreover, the LSC technology can be utilized for the fabrication of novel devices, such as lightweight optical antennas designed for space applications and spectral reshapers intended for photobiology and photochemistry applications.56,57

Figure 3.

Figure 3

(a) Schematic illustration of the solar-spectrum splitting in a tandem LSC. (b) HRTEM image of an individual CIS/ZnS QD and schematic illustration of electronic states and optical transitions according to light absorption (brown arrow) and PL emission (red arrow). (c) Photograph of a tandem LSC (ca. 232 cm2–) with a M2+ doped CdxZn1–xS QD top layer and a CISe QD bottom layer. (d) Solution samples of CIS/ZnS QDs with different concentrations and the corresponding visible transmittances. (e) Current density vs. voltage (JV) characteristics.53 Reproduced with permission from ref (53). Copyright 2018 Springer Nature.

Since the initial proposal of LSCs as cost-effective alternatives to silicon solar cells in 1976,58 an increasing number of researchers have been focusing their attention on LSCs and specifically studying dye molecules.59,60 However, the general dyes have limited solar spectral coverage and exhibit low PL efficiencies at the near-infrared wavelengths—which are most suitable for coupling to silicon photovoltaics—as well as significant reabsorption losses. Due to the unrivaled tunability of emission spectra in the visible and NIR regions associated with high PL quantum yields and high photostability, CQDs represent a fascinating emerging category of LSC emitters.6163 In addition, the CQDs with tunable bandgaps are also well suited for fabrication of multilayered LSCs, where each layer is specifically constructed to absorb the different parts of the solar spectrum (Figure 3a).

Klimov and coauthors fabricated a large-area and high-efficiency tandem LSC, where one layer absorbs the visible light and another absorbs the NIR.53 CIS cores with a size of 3.1 ± 0.5 nm were synthesized and subsequently coated with a thick ZnS layer to fabricate the top LSC layer. This was done due to the strong absorbance in the solar spectrum and high PL quantum yield (65–75%) (Figure 3b). The obtained large-area CIS/ZnS LSC (15.24 × 15.24 cm2) appears dark to an observer, which has a total sunlight absorptance of 28% (Figure 3c) and a corresponding visible transmittance of 23% (Figure 3d). Then, the M2+ doped CdxZn1–xS CQDs with absorption in the ultraviolet region and a high PL quantum yield (78%) were utilized to fabricate the top LSC layer (Figure 3b). As shown in Figure 3e, the PCEs of the top and bottom layers are 1.3% and 1.8%, respectively. The tandem QD LSC shows a high optical quantum efficiency of 6.4% under sunlight illumination and PCE of 3.1%.

2.3. QD-Sensitized Solar Cells

As a cost-effective alternative to film photovoltaics, semiconductor QDSSCs have drawn significant attention recently and exhibit great potentials for the next generation of photovoltaics.6466 QDSSCs derived from dye-sensitized solar cells were first reported by O’Regan and Gratzel in 1991.67 CQDs have been utilized to replace organic dyes as the photosensitizer due to their electrical and optical properties, such as size-dependent bandgaps, higher stability toward water and oxygen, larger extinction coefficient, and multiple exciton generation with single-photon absorption.27,68 Due to the multiple exciton generation, the theoretical PCE of QDSSCs reaches up to 42%, which surpasses the efficiency of 31% for semiconductor solar cells.69

For large-scale applications, the integration of QDSSC technologies has the benefits of useful device construction and solution-processable production owing to their considerably simple device manufacturing approaches and suitable structure.71,72 Since the report of the first certified QDSSCs in 2013, the PCE of QDSSCs has increased dramatically to >13% in recent years.7375 Similar to the initial certified QDSSCs, the champion QDSSCs utilize the less-toxic I–III–VI2 CQDs with a high absorption coefficient and near optimal band gap energy (1.0–1.5 eV).7678 Chang and coauthors used aqueous synthesized Mn-doped CIS CQDs as the photosensitizer in QDSSCs (Figure 4a), exhibiting Mn concentration dependent performances.70 The short-circuit current increased with the incorporation concentration of Mn into CIS QDs (Figure 4b), which is attributed to the effective injection of excited electrons from CIS QDs into TiO2 and the resulting higher lifetime of electrons, probably via the formed Mn midgap in the CIS band structure (Figure 4a). The Mn-doped CIS QDSSCs show a maximum PCE of 6.28% (Figure 4c) due to the combination of higher light-absorption efficiency, slower carrier recombination, and a longer lifetime of electrons.

Figure 4.

Figure 4

(a) Schematic showing the mechanism of electron injection in Mn-doped CIS QDSSCs. (b,c) JV characteristics and IPCE spectra of Mn-doped CIS CQDs.70 Reproduced with permission from ref (70). Copyright 2019 Royal Society of Chemistry. (d,e) JV characteristics and corresponding EQE of the brass-cathode-based solar cells made of CQDs with HT, MPA, and OAm ligands. (f) Temporal evolution of the current density of the brass- and mesoporous-carbon-based solar cells investigated under AM 1.5 G illumination, with the bias set to Vmax. Vmax = 0.56, 0.38, and 0.39 V for the QDs capped with OAm, MPA, and HT, respectively.19 Reproduced with permission from ref (19). Copyright 2020 Springer Nature.

In addition, surface treatments and linking strategies are beneficial for the formation of strong coupling of QDs to the TiO2 electrode which can usefully eliminate surface-related intragap defects and accelerate the electron migration rate, thereby achieving excellent PV performance. Du and coauthors studied the carrier dynamics in TiO2-electrode-coupled Zn-doped CIS QDs with “linking” and “nonlinking” surface ligands and correlated the spectroscopic observations with the photovoltaic performance of the QDs. They regulated the defect-related relaxation rate and QD-to-TiO2 electrode electron transfer rate through the use of surface ligands with diverse lengths and binding forces. Moreover, these ligands do not introduce any electrostatic or steric limitations, but rather facilitate the formation of a compact layer of QDs on the surface of the photoelectrode. They obtained a high short-circuit current of >26 mA cm–2 (Figure 4d), which is similar to that of the best reported QDSSCs.76 The developed QDSSCs show a high reproducible PCE of 9–10% and a high EQE of ∼85% (Figure 4e). The excellent performances are attributed to the peculiar photoconversion mechanism involving two types of intragap states: native Cu+ hole-trapping defects and surface-located electron traps, which can mediate QD interactions with the electrolyte and the TiO2 electrode, respectively. Moreover, the stability of solar cells utilizing a brass electrode is significantly enhanced, in comparison to devices employing a carbon cathode. The performance of the system remains stable without any noticeable degradation during 3 min long stability tests (Figure 4f). The findings suggest that the degradation of the electrolyte in this particular case is effectively suppressed. This is achieved through chemical transformations involving copper species, which mediate the reduction of polysulfides on the cathode side of the device and consequently prevent the formation of sulfur radicals.

2.4. PEC H2 Production

Hydrogen energy serves as a widely used green secondary energy. However, it is noteworthy that there is almost no existence of hydrogen on Earth. Generally, the production of H2 is achieved through the decomposition of hydrogen-containing substances, such as water. PEC H2 production is a simple, cost-effective, sustainable, and environmentally benign method to realize solar-to-hydrogen conversion.7982 Semiconductor QDs are deemed to be promising materials for PEC H2 production due to their unique electronic and optical properties, such as high optical absorption coefficient, tunable band gap and band structure, and potential multiple exciton generation.77,83 Furthermore, the utilization of QDs to sensitize metal-oxide semiconductors is one of the most promising methods for effective PEC hydrogen generation.8488 To date, the QDs mainly investigated for PEC H2 production contain toxic elements such as Cd or Pb, limiting the applications in practice owing to the associated environmental issues.85,89

Heavy-metal-free I–III–VI CQDs are emerging as promising alternative materials and have been extensively utilized for PEC H2 production due to their low toxicity, wide absorption region, and high light extinction coefficient.9195 Many efforts have been made in the fabrication process of QD photoanodes (morphology control, metal doping, core–shell structure, etc.) to develop the applicability of I–III–VI CQDs for PEC and explore the material design principles for efficient PEC H2 generation.9698 Note that defect engineering is also an efficient method to modulate the electrical and photophysical properties of semiconductor materials.99101 Furthermore, this method is particularly useful for multinary semiconductors, as they have different types of point defects.

Yang and coauthors reported the defect engineering of CIS CQDs for PEC H2 production by tuning the reactivity of metal precursors during the QD synthesis process.90 CIS CQDs with different In/Cu ratios maintaining their shape and size have been synthesized and employed to sensitize mesoporous TiO2 films for the fabrication of QD-sensitized photoanodes (Figure 5a). The CIS CQDs with an In/Cu ratio of 1.55 (CIS 3 QDs) possessed the longest carrier lifetime and highest carrier concentration among all the obtained CQDs. Thus, the photoanode fabricated by CIS 3 CQDs generated a champion photocurrent density of 10.7 mA cm–2 at 0.6 V vs RHE and a high applied bias photon-to-current efficiency (ABPE) (Figure 5b,c). Besides, the photoanode fabricated by CIS 3 CQDs exhibited the highest IPCE values over the entire spectral range (Figure 5d). This excellent performance is attributed to the higher electron collection and injection efficiencies compared with other samples.102 They also investigated the actual H2 generation performances of photoanodes fabricated by CIS 3 CQDs at 0.6 V vs RHE for 4 h (Figure 5e). The Faradaic efficiency was above 90%, illustrating that most of the measured current during the PEC reaction is used for hydrogen production (Figure 5e). The defect engineering of CIS CQDs can effectively boost the PEC H2 generation property of CIS QD-sensitized photoanodes.

Figure 5.

Figure 5

(a) Schematic illustration of the PEC H2 production using a CIS QDs/TiO2 photoanode. (b–d) JV curves, ABPE curves, and IPCE spectra of CIS QDs/TiO2 photoanodes. (e) H2 evolution over time measured at 0.6 V vs RHE, calculated Faradaic efficiency, and calculated theoretical H2 yield of the CIS 3/TiO2 photoanode.90 Reproduced with permission from ref (90). Copyright 2023 Wiley.

2.5. Photocatalytic H2 Production

Photocatalytic water splitting to hydrogen production is an ideal approach for solar-to-hydrogen conversion without byproducts and pollution. I–III–VI CQDs have been widely used for photocatalytic H2 production due to their Cd-free composition, composition-dependent band structure, multiple photon absorption, size-related photoelectric properties, and unique defect tolerance.103105 CIS among these I–III–VI CQDs has garnered more attention for photocatalytic H2 production due to its large exciton Bohr radius (approximately 10.6 nm), which facilitates the regulation of the bandgaps from ultraviolet to the near-infrared region via size.106,107 More importantly, the defect tolerance and composition-dependent bandgap of CIS CQDs offer an opportunity to enhance the photocatalytic H2 evolution property through defect engineering.

Yuan and coauthors developed a ligand-assisted two-step aqueous method to synthesize defect CIS CQDs for the first time (Figure 6a).108 The copper vacancy defects and the substitution of indium at copper site defects obviously changed the absorption properties of the CIS CQDs. The obtained CIS CQDs can effectively catalyze the photocatalytic water splitting process to produce H2 (Figure 6b). The CIS CQDs exhibited a Cu/In ratio dependent photocatalytic H2 production property with a champion evolution rate of 722 μmol g–1 h–1, which is about 23 times higher than that (31 μmol g–1 h–1) of the initially synthesized CIS nucleus (Figure 6c). Furthermore, the hydrogen generation rate exhibited no significant decline and consistently maintained above 80% of the initial cycle for CISe-1/4 QDs after four consecutive cycles (Figure 6d). The most efficient CIS CQDs showed a wavelength-dependent AQE of H2 production with a consistent tendency in the absorption spectrum (Figure 6e) with a maximum AQE of 1.3%.

Figure 6.

Figure 6

(a) TEM and high-angle annular dark field (HAADF) images of CIS CQDs. (b) Schematic illustration of the photocatalytic H2 production mechanism. (c) Photocatalytic H2 evolution performances of CIS CQDs. (d) Cycling stability test of CISe-1/4 for photocatalytic H2 production. (e) UV–vis absorption spectra and AQE of CISe-1/4 CQDs.108 Reproduced with permission from ref (108). Copyright 2021 Royal Society of Chemistry.

2.6. QD Transistors

Thin-film transistors (TFTs) and the corresponding integrated circuits have attracted significant attention because they are the fundamental building blocks for fabricating next-generation electronic devices.109,110 The fabrication of devices on flexible substrates using the widely employed single-crystal and polycrystalline silicon TFT technology is challenging due to the requirement for high process temperatures.111 In addition, scale-up production of industrial silicon ineluctably leads to high cost and energy consumption.112 In the last few decades, many semiconductor materials have been studied for replacing silicon to fabricate next-generation electronic devices, such as carbon materials, metal oxides, transition metal chalcogenides, and organic materials.113116 The emerging technology of CQD electronics offers an opportunity for combining the advantages of well-understood inorganic semiconductors with solution processability.

CQDs are considered as some of the most promising alternatives for silicon due to their high chemical and environmentalal stability and shape-, size-, and composition-controlled electronic properties.117119 The CQDs are usually synthesized through a colloidal approach, enabling low-cost fabrication of thin-film electronic devices via easily scalable solution-based methods.17,30,120 However, the basic and applied research conducted on CQDs is primarily focused on Pb and Cd chalcogenides, which contain highly toxic components that greatly limit their potential applications.121123 I–III–VI2 CQDs are the possible nontoxic alternatives for Pb and Cd chalcogenide QDs and have been widely used for fabricating electronic devices in the fields of transistors, LEDs, and solar energy conversion.124126 As an outstanding alternative, CIS CQDs with desirable carrier type, concentration, and mobility can be easily obtained via regulating their size, shape, and composition.127 In recent years, CIS CQDs have been extensively utilized to fabricate solution-processed TFTs.30,128,129

Yuan and coauthors fabricated both n- and p-channel transistors and the corresponding integrated circuits using CIS CQDs.18 First, they synthesized highly crystalline CIS CQDs with organic capping ligands by a single-pot colloidal synthesis method (Figure 7a,b). Then, they fabricated p-channel FETs with gold drain and source electrodes (Figure 7c) in order to study the hole transport properties of CIS CQD films. Because the synthesized CIS CQDs are overcoated with a shell of organic ligands, the CIS CQD films show a low hole mobility of 2.6 × 10–5 cm2 V–1 s–1, which is attributed to the wide interdot spacing constrained by the long organic ligands. In order to improve the carrier mobilities in CIS CQD films, the original long organic ligands are generally replaced with shorter species, such as 1,2-ethanedithiol (EDT) and halide ligands (e.g., NH4Cl, NH4Br and NH4I).130132 The hole mobility increased to ca. 1.3 × 10–4 cm2 V–1 s–1 (Figure 7d) when the CIS CQD films were treated with EDT. Similarly, the carrier mobility of CIS CQD films increased by a factor of ca. 10 when they were treated with halide ligands (Figure 7e–g).

Figure 7.

Figure 7

(a) TEM and HRTEM images of CIS CQDs. (b) Schematic illustration of a CIS CQD with different types of capping ligands. (c) Schematic illustration of a p-channel CQD-field-effect transistor (FET). (c–g) Output characteristics of Au-contact p-channel FETs fabricated by colloidal CIS QDs capped with EDT, NH4Cl, NH4I, and NH4Br, respectively. (h,i) Schematic illustration and a top-view SEM image of an In-contact n-channel CIS CQD FET. (j) Output characteristics of In-contact n-channel CIS CQD FETs. (k) Annealing temperature dependent In/(In + Cu) ratio (red squares) and electron mobility (black circles) of an In-contact n-channel CIS CQD FET.18 Reproduced with permission from ref (18). Copyright 2020 Springer Nature.

Subsequently, they fabricated n-channel CIS CQD FETs with indium source and drain contact devices by thermal annealing to study the electron transport property of CIS CQD films (Figure 7h,i). The annealed In-contact FET fabricated by NH4I-treated CIS CQDs exhibited an excellent n-type property with an electron mobility of ca. 0.14 cm2 V–1 s–1 (Figure 7j). Interestingly, the electron mobility (black circles) rapidly increased with the annealing temperature, which was related to the increase of the In ratio in the CQDs (Figure 7k). Importantly, the integrated logic circuits made of p- and n-channel CIS CQD FETs show low switching voltages compatible with standard complementary metal-oxide-semiconductor devices.

2.7. QD LEDs

Semiconductor QDs serve as a class of widely known light-emitting nanocrystals, which have been used as efficient lighting materials for decades.133135 Although the common CdSe CQDs have serious environmental issues, such as toxicity, they are widely used lighting materials in commercial LEDs.136138 Many efforts have been made to find environmentally benign QDs to replace Cd-based QDs for commercial applications. I–III–VI ternary CQDs are promising alternatives for lighting applications due to their green and environmental friendliness, high emission intensity, and tunable PL emission ranges from the visible to NIR window.126,139141 Furthermore, strong and stable luminescence is important for practical applications.

CIS with a narrow bandgap of 1.04 eV and a large exciton Bohr radius of ca. 10.6 nm is predicted to be a promising luminescent emitter in the red and near-infrared light region.15,127,142 Allen and coauthor successfully synthesized CIS CQDs with a remarkable photoluminescence quantum yield (PLQY) of 25%.143 Nose and coauthors have obtained stoichiometric CIS CQDs with PLQYs of 5%, later improving the PLQYs to 16% through coating a ZnSe shell on CIS QDs.144 Subsequently, several researchers have successfully improved the PLQYs through shell engineering. Cassette and coauthors synthesized CIS/ZnS core/shell CQDs with PLQYs up to 50%.145 Park and coauthors produced In-rich CIS CQDs with PLQYs of 20–30%, improving the PL efficiency up to 60% via ZnS-shell protection.146 The excellent NIR PL emission property of CIS CQDs makes them an ideal choice as a luminescent material for portable mini- or microphosphor-converted LEDs (pc-LEDs).

Chen and coauthors reported the design of broad-band NIR CIS CQDs for micro pc-LED applications. High-quality Zn2+ doped CIS CQDs were prepared through a hot-injection method (Figure 8a).23 The PL emission peak was manipulated from 855 to 1150 nm by adjusting the Cu/In ratios. Moreover, the Zn dopant has a nearly negligible influence on the crystal structure of CIS CQDs (Figure 8b) and is homogeneously distributed throughout the CISe-Zn CQD (Figure 8c). Furthermore, the PLQY of CISe-Zn CQD could be improved from 28.6% to 92.8% through coating a ZnSe shell. Subsequently, they fabricated a NIR pc-LED using CISe-Zn@ZnSe CQDs as phosphors combined with a commercial blue chip (Figure 8d). The fabricated NIR pc-LED shows a broad NIR emission in the region of 600–1000 nm (CISe-Zn@ZnSe CQDs) and a blue emission at 450 nm (chip) (Figure 8e). Importantly, the fabricated NIR pc-LED exhibited good thermal stability at temperatures from 298 to 423 K (Figure 8f). The output power increased with the actuation current and a high NIR output power of 88.7 mW could be achieved at an actuation current of 350 mA (Figure 8g), which is much higher than those of the reported Cd/Pb-free QD-based NIR pc-LEDs.147149

Figure 8.

Figure 8

(a) Schematic graph showing the colloidal synthesis of Zn2+ doped CIS (CIS-Zn) CQDs. (b) XRD patterns of CIS CQDs with different doping concentrations of Zn2+. (c) EDS-mapping of CIS-Zn CQDs. (d) Schematic illustration of the fabrication of pc-LEDs using CIS-Zn@ZnSe CQDs. (e) Electroluminescence performances of the fabricated pc-LED at an actuation current of 120 mA. (f) Temperature-dependent PL emission properties (λex = 365 nm) of the fabricated pc-LED at temperatures from 298 to 423 K. (g) Output power of the fabricated pc-LED at different actuation currents.23 Reproduced with permission from ref (23). Copyright 2023 Wiley.

2.8. QD Photodetectors

Photodetectors which can convert different photons into electrical signals are widely utilized in optical communications, light cameras, and medicine.150152 Till now, many semiconductor materials have been used as photoactive layers in photodetectors, such as silicon, QDs, transition metal chalcogenides, and conjugated polymers.153156 However, they always have a high cost and require a complicated fabrication process.157 Solution-processed CQDs with quantum size effect tuning are compatible with a series of substrates, enabling a direct integration with commercial microelectronics, microfluidics, organic circuits, and optical circuitry.5,158160 Many solution-processed CQD ultrasensitive photodetectors have been demonstrated in both the visible and infrared region, but these devices are usually fabricated by using toxic Cd/Pb-based QDs.161,162 The exploration of environmentally friendly QDs to achieve high detectivity in photodetectors is still required.

Recently, heavy-metal-free CIS nanomaterials with different shapes have attracted attention as a key material for application in ecofriendly photodetectors owing to their direct bandgap transient characteristics, stable phase structure, wide absorption range covering the ultraviolet to near-infrared region, and nontoxicity.25,163165 Li and coauthors used heavy-metal-free CIS CQDs to fabricate ultrathin self-powered photodetectors, which enable high-performance wearable photoplethysmography-based health monitoring systems (Figure 9a).28 CIS CQDs capped with I were used to fabricate ultrathin light absorption layers (∼40 nm); mixtures of p-type colloidal MoS2 nanosheets and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were employed as hole transport layers (HTLs), and n-type ZnO nanoparticles were used as electron transport layers (ETLs) (Figure 9b,c).

Figure 9.

Figure 9

(a) Schematic illustration of ultrathin CIS QD photodetectors. (b,c) STEM image of CIS CQDs and cross-sectional TEM image of the hybrid PEDOT/PSS/MoS2 hole transport layer. (d,e) Schematic and energy level diagrams of the CIS QD photodetectors. (f) JV measurements of the photodetectors with pristine and hybrid hole transport layers under illumination (555 nm, 91.7 mW cm–2) and in the dark. (g) Time-dependent photoresponse of the hybrid photodetectors at 0 V bias under illumination (555 nm, 108.9 mW cm–2). (h) Rise and decay times of the hybrid photodetectors.28 Reproduced with permission from ref (28). Copyright 2023 American Chemical Society.

Ultrathin CIS QD photodetectors are fabricated in a structure with ITO/HTL (60 nm)/TBAI-QDs (40 nm)/ZnO (23 nm)/Ag (90 nm) (Figure 9d). The energy band of CIS QDs is situated between those of the ZnO and HTL, driving photogenerated holes and electrons across the interface to reach the ITO and Ag electrodes, respectively (Figure 9e). Figure 9f shows the JV curves of pristine photodetectors fabricated with pure PEDOT:PSS and hybrid photodetectors fabricated with hybrid HTLs, which were recorded under 555 nm illumination (91.7 mW cm–2) and in the dark. The dark-current and photocurrent densities of the hybrid photodetectors are more than 10-fold lower and 5-fold higher than those of the pristine photodetectors at 0 V bias, respectively. These excellent performances are attributed to the rapid charge extraction realized by hybrid HTLs and restrained charge injection via a strong potential barrier coming from enhanced photovoltage. The hybrid photodetectors exhibited a reversible and stable Ilight/Idark ratio of ∼8.6 × 104 under periodic switching at 555 nm without degradation after 3000 s of continuous operation, illustrating the excellent photostability (Figure 9g). In addition, both the rise and decay times of the hybrid photodetectors are shorter than those of the pristine photodetectors (Figure 9h). Moreover, the CIS QD photodetectors can be integrated into skin-attachable photoplethysmography sensors for accurate real-time healthcare monitoring.

3. Summary and Perspectives

Recently, there has been significant progress in the development of CIS CQDs due to their strong light absorption and bright emission in both visible and infrared regions, large Stokes shift, and relatively lower toxicity compared to conventional CdX and PbX (X = S, Se, and Te) QDs. The composition-dependent bandgap and special defect tolerance of CIS CQDs enable convenient customization of band alignment for various applications, making them highly suitable for solar energy conversion, displays, and electronic devices. This review presents a comprehensive overview of recent optical applications involving CIS CQDs, including QD solar cells, QDSSCs, and QD LSCs. Additionally, it discusses the utilization of these materials in photocatalytic and photoelectrochemical H2 production, QD transistors, QD LEDs, and QD photodetectors. Although significant progress has been achieved in the optical applications of CIS CQDs, several unresolved challenges necessitate further investigations into their device applications. Herein, we provide insights into current challenges and offer suggestions for future advancements.

  • (1)

    The large-scale synthesis of CIS CQDs is fundamental for commercialization. Achieving gram-scale synthesis of CIS CQDs without compromising quality remains a significant challenge, and there is an urgent need to design reactions beyond the laboratory scale. Additionally, the lack of precise control over size and composition hinders the investigation of their size- and composition-dependent optical properties.

  • (2)

    The future device applications based on CIS CQDs are typically fabricated using printing techniques. Therefore, it is essential to modulate the surface of CIS CQDs with suitable ligands, enabling their effective dispersion in various solvents. Consequently, ligands consisting of short-chain organic compounds that exhibit stability at high temperatures are highly preferred.

  • (3)

    Although significant progress has been made in CIS QD-based devices, their performance still falls short of practical applications. The understanding of the working mechanism and the design of more device structures are essential for advancing the functionality of the devices. Taking the QD photodetectors for example, the performances can be enhanced by optimizing the design of better electron and hole transport layers.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 22101271), the National Key Research and Development Program of China (Grant 2021YFA0715703).

Glossary

Abbreviations

QDs

quantum dots

CIS

CuInSe2

DOS

density of state

CQDs

colloidal quantum dots

PEC

photoelectrochemical

QDSSCs

quantum dot sensitized solar cells

LSCs

luminescence solar concentrators

LEDs

light-emitting diodes

EQE

external quantum efficiency

PCE

power conversion effciency

AQE

apparent quantum efficiency

HAADF

high-angle annular dark field

TFTs

thin-film transistors

PLQYs

photoluminescence quantum yields

PL

photoluminescence

NIR

near-infrared

HTLs

hole transport layers

ETLs

electron transport layers

The authors declare no competing financial interest.

Special Issue

Published as part of ACS Omegavirtual special issue “At the Speed of Light: Recent Advances in Optoelectronics”.

References

  1. Fan F.; Voznyy O.; Sabatini R. P.; Bicanic K. T.; Adachi M. M.; McBride J. R.; Reid K. R.; Park Y. S.; Li X.; Jain A.; Quintero-Bermudez R.; Saravanapavanantham M.; Liu M.; Korkusinski M.; Hawrylak P.; Klimov V. I.; Rosenthal S. J.; Hoogland S.; Sargent E. H. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544 (7648), 75–79. 10.1038/nature21424. [DOI] [PubMed] [Google Scholar]
  2. Mokari T.; et al. Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods. Science 2004, 304 (5678), 1787–1790. 10.1126/science.1097830. [DOI] [PubMed] [Google Scholar]
  3. Hou J.; Li W.; Zhang H.; Sidhik S.; Fletcher J.; Metcalf I.; Anantharaman S. B.; Shuai X.; Mishra A.; Blancon J.-C.; Katan C.; Jariwala D.; Even J.; Kanatzidis M. G.; Mohite A. D. Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness. Nat. Synth. 2024, 3 (2), 265–275. 10.1038/s44160-023-00422-3. [DOI] [Google Scholar]
  4. García de Arquer F. P.; Talapin D. V.; Klimov V. I.; Arakawa Y.; Bayer M.; Sargent E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373 (6555), eaaz8541 10.1126/science.aaz8541. [DOI] [PubMed] [Google Scholar]
  5. Kagan C. R.; Lifshitz E.; Sargent E. H.; Talapin D. V. Building devices from colloidal quantum dots. Science 2016, 353 (6302), aac5523. 10.1126/science.aac5523. [DOI] [PubMed] [Google Scholar]
  6. Mocatta D.; Cohen G.; Schattner J.; Millo O.; Rabani E.; Banin U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332 (6025), 77–81. 10.1126/science.1196321. [DOI] [PubMed] [Google Scholar]
  7. Won Y.-H.; Cho O.; Kim T.; Chung D.-Y.; Kim T.; Chung H.; Jang H.; Lee J.; Kim D.; Jang E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575 (7784), 634–638. 10.1038/s41586-019-1771-5. [DOI] [PubMed] [Google Scholar]
  8. Klimov V. I. Multicarrier Interactions in Semiconductor Nanocrystals in Relation to the Phenomena of Auger Recombination and Carrier Multiplication. Annu. Rev. Conden. Ma. P. 2014, 5 (1), 285–316. 10.1146/annurev-conmatphys-031113-133900. [DOI] [Google Scholar]
  9. Rossetti R.; Nakahara S.; Brus L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79 (2), 1086–1088. 10.1063/1.445834. [DOI] [Google Scholar]
  10. Ossia Y.; Levi A.; Panfil Y. E.; Koley S.; Scharf E.; Chefetz N.; Remennik S.; Vakahi A.; Banin U. Electric-field-induced colour switching in colloidal quantum dot molecules at room temperature. Nat. Mater. 2023, 22 (10), 1210–1217. 10.1038/s41563-023-01606-0. [DOI] [PubMed] [Google Scholar]
  11. Almeida G.; Ubbink R. F.; Stam M.; du Fossé I.; Houtepen A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8 (11), 742–758. 10.1038/s41578-023-00596-4. [DOI] [Google Scholar]
  12. Wang Y.; Kavanagh S. R.; Burgués-Ceballos I.; Walsh A.; Scanlon D. O.; Konstantatos G. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 2022, 16 (3), 235–241. 10.1038/s41566-021-00950-4. [DOI] [Google Scholar]
  13. Liang W. F.; Nie C. M.; Du J.; Han Y. Y.; Zhao G. H.; Yang F.; Liang G. J.; Wu K. F. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photonics 2023, 17 (4), 346–357. 10.1038/s41566-023-01156-6. [DOI] [Google Scholar]
  14. Lox J. F. L.; Dang Z.; Dzhagan V. M.; Spittel D.; Martín-García B.; Moreels I.; Zahn D. R. T.; Lesnyak V. Near-Infrared Cu-In-Se-Based Colloidal Nanocrystals via Cation Exchange. Chem. Mater. 2018, 30 (8), 2607–2617. 10.1021/acs.chemmater.7b05187. [DOI] [Google Scholar]
  15. Yarema O.; Bozyigit D.; Rousseau I.; Nowack L.; Yarema M.; Heiss W.; Wood V. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chem. Mater. 2013, 25 (18), 3753–3757. 10.1021/cm402306q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harvey S. M.; Houck D. W.; Kirschner M. S.; Flanders N. C.; Brumberg A.; Leonard A. A.; Watkins N. E.; Chen L. X.; Dichtel W. R.; Zhang X.; Korgel B. A.; Wasielewski M. R.; Schaller R. D. Transient Lattice Response upon Photoexcitation in CuInSe2 Nanocrystals with Organic or Inorganic Surface Passivation. ACS Nano 2020, 14 (10), 13548–13556. 10.1021/acsnano.0c05553. [DOI] [PubMed] [Google Scholar]
  17. Guo R. Q.; Zhang L. X.; Meng J.; Liu A. Q.; Yuan J. F.; Zheng K. B.; Tian J. J. Exploiting Flexible Memristors Based on Solution-Processed Colloidal CuInSe Nanocrystals. Adv. Electron. Mater. 2020, 6 (5), 2000035. 10.1002/aelm.202000035. [DOI] [Google Scholar]
  18. Yun H. J.; Lim J.; Roh J.; Neo D. C. J.; Law M.; Klimov V. I. Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots. Nat. Commun. 2020, 11 (1), 5280. 10.1038/s41467-020-18932-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Du J.; Singh R.; Fedin I.; Fuhr A. S.; Klimov V. I. Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nat. Energy 2020, 5 (5), 409–417. 10.1038/s41560-020-0617-6. [DOI] [Google Scholar]
  20. de Kergommeaux A.; Fiore A.; Bruyant N.; Chandezon F.; Reiss P.; Pron A.; de Bettignies R.; Faure-Vincent J. Synthesis of colloidal CuInSe2 nanocrystals films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2011, 95 (Supplement 1), S39–S43. 10.1016/j.solmat.2010.12.054. [DOI] [Google Scholar]
  21. Liu W.; Turkani V. S.; Akhavan V.; Korgel B. A. Photonic Lift-off Process to Fabricate Ultrathin Flexible Solar Cells. ACS Appl. Mater. Interfaces 2021, 13 (37), 44549–44555. 10.1021/acsami.1c12382. [DOI] [PubMed] [Google Scholar]
  22. Houck D. W.; Siegler T. D.; Korgel B. A. Predictive Modeling of CuInSe2 Nanocrystal Photovoltaics: The Importance of Band Alignment and Carrier Diffusion. ACS Appl. Energy Mater. 2019, 2 (2), 1494–1504. 10.1021/acsaem.8b02090. [DOI] [Google Scholar]
  23. Lian W.; Tu D.; Weng X.; Yang K.; Li F.; Huang D.; Zhu H.; Xie Z.; Chen X. Near-Infrared Nanophosphors Based on CuInSe2 Quantum Dots with Near-Unity Photoluminescence Quantum Yield for Micro-LEDs Applications. Adv. Mater. 2024, 36 (9), 2311011. 10.1002/adma.202311011. [DOI] [PubMed] [Google Scholar]
  24. McDaniel H.; Fuke N.; Pietryga J. M.; Klimov V. I. Engineered CuInSexS2-x Quantum Dots for Sensitized Solar Cells. J. Phys. Chem. Lett. 2013, 4 (3), 355–361. 10.1021/jz302067r. [DOI] [PubMed] [Google Scholar]
  25. Wang J.-J.; Wang Y.-Q.; Cao F.-F.; Guo Y.-G.; Wan L.-J. Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic- Inorganic Hybrid Photodetectors. J. Am. Chem. Soc. 2010, 132 (35), 12218–12221. 10.1021/ja1057955. [DOI] [PubMed] [Google Scholar]
  26. Kim M. R.; Ma D. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. J. Phys. Chem. Lett. 2015, 6 (1), 85–99. 10.1021/jz502227h. [DOI] [PubMed] [Google Scholar]
  27. Tian J.; Cao G. Semiconductor quantum dot-sensitized solar cells. Nano Rev. 2013, 4 (1), 22578. 10.3402/nano.v4i0.22578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li S.; Jang J. H.; Chung W.; Seung H.; Park S. I.; Ma H.; Pyo W. J.; Choi C.; Chung D. S.; Kim D.-H.; Choi M. K.; Yang J. Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring. ACS Nano 2023, 17 (20), 20013–20023. 10.1021/acsnano.3c05178. [DOI] [PubMed] [Google Scholar]
  29. Li F.; Guo C.; Pan R.; Zhu Y.; You L.; Wang J.; Jin X.; Zhang Q.; Song Y.; Chen Z.; Li Q. Integration of green CuInS2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors. Opt. Mater. Express 2018, 8 (2), 314–323. 10.1364/OME.8.000314. [DOI] [Google Scholar]
  30. Pang C.; Hu S. B.; Guo C.; Wang J. T.; Zou S. H.; Pan Z. X.; Liu J. C.; Shen L. M.; Bao N. Z.; Ning H. L.; Gupta A.; Gong Z. High-Performance Inorganically Connected CuInSe Nanocrystal Thin-Film Transistors and Integrated Circuits Based on the Solution Process of Colloidal Synthesis, Ligand Exchange, and Surface Treatment. Chem. Mater. 2021, 33 (22), 8775–8785. 10.1021/acs.chemmater.1c02877. [DOI] [Google Scholar]
  31. Lewis N. S. Research opportunities to advance solar energy utilization. Science 2016, 351 (6271), aad1920. 10.1126/science.aad1920. [DOI] [PubMed] [Google Scholar]
  32. Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. 10.1038/natrevmats.2017.50. [DOI] [Google Scholar]
  33. Meinardi F.; Ehrenberg S.; Dhamo L.; Carulli F.; Mauri M.; Bruni F.; Simonutti R.; Kortshagen U.; Brovelli S. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 2017, 11 (3), 177–185. 10.1038/nphoton.2017.5. [DOI] [Google Scholar]
  34. Zhao Q.; Han R.; Marshall A. R.; Wang S.; Wieliczka B. M.; Ni J.; Zhang J. J.; Yuan J. Y.; Luther J. M.; Hazarika A.; Li G. R. Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large-Area Fabrication. Adv. Mater. 2022, 34 (17), 2107888. 10.1002/adma.202107888. [DOI] [PubMed] [Google Scholar]
  35. Kramer I. J.; Sargent E. H. The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 2014, 114 (1), 863–82. 10.1021/cr400299t. [DOI] [PubMed] [Google Scholar]
  36. Carey G. H.; Abdelhady A. L.; Ning Z.; Thon S. M.; Bakr O. M.; Sargent E. H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115 (23), 12732–12763. 10.1021/acs.chemrev.5b00063. [DOI] [PubMed] [Google Scholar]
  37. Gur I.; Fromer N. A.; Geier M. L.; Alivisatos A. P. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science 2005, 310 (5747), 462–465. 10.1126/science.1117908. [DOI] [PubMed] [Google Scholar]
  38. Yuan M.; Liu M.; Sargent E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1 (3), 16016. 10.1038/nenergy.2016.16. [DOI] [Google Scholar]
  39. Zhao H.; Rosei F. Colloidal Quantum Dots for Solar Technologies. Chem. 2017, 3 (2), 229–258. 10.1016/j.chempr.2017.07.007. [DOI] [Google Scholar]
  40. Vidal R.; Alberola-Borràs J. A.; Habisreutinger S. N.; Gimeno-Molina J. L.; Moore D. T.; Schloemer T. H.; Mora-Seró I.; Berry J. J.; Luther J. M. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 2021, 4 (3), 277–285. 10.1038/s41893-020-00645-8. [DOI] [Google Scholar]
  41. Bernechea M.; Miller N. C.; Xercavins G.; So D.; Stavrinadis A.; Konstantatos G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10 (8), 521–525. 10.1038/nphoton.2016.108. [DOI] [Google Scholar]
  42. Panthani M. G.; Stolle C. J.; Reid D. K.; Rhee D. J.; Harvey T. B.; Akhavan V. A.; Yu Y.; Korgel B. A. CuInSe2Quantum Dot Solar Cells with High Open-Circuit Voltage. J. Phys. Chem. Lett. 2013, 4 (12), 2030–2034. 10.1021/jz4010015. [DOI] [PubMed] [Google Scholar]
  43. Stolle C. J.; Harvey T. B.; Pernik D. R.; Hibbert J. I.; Du J.; Rhee D. J.; Akhavan V. A.; Schaller R. D.; Korgel B. A. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 2014, 5 (2), 304–309. 10.1021/jz402596v. [DOI] [PubMed] [Google Scholar]
  44. Pietryga J. M.; Park Y.-S.; Lim J.; Fidler A. F.; Bae W. K.; Brovelli S.; Klimov V. I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116 (18), 10513–10622. 10.1021/acs.chemrev.6b00169. [DOI] [PubMed] [Google Scholar]
  45. Jackson P.; Hariskos D.; Lotter E.; Paetel S.; Wuerz R.; Menner R.; Wischmann W.; Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl. 2011, 19 (7), 894–897. 10.1002/pip.1078. [DOI] [Google Scholar]
  46. Stolle C. J.; Panthani M. G.; Harvey T. B.; Akhavan V. A.; Korgel B. A. Comparison of the Photovoltaic Response of Oleylamine and Inorganic Ligand-Capped CuInSe2 Nanocrystals. ACS Appl. Mater. Interfaces 2012, 4 (5), 2757–2761. 10.1021/am3003846. [DOI] [PubMed] [Google Scholar]
  47. Akhavan V. A.; Panthani M. G.; Goodfellow B. W.; Reid D. K.; Korgel B. A. Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices. Opt. Express 2010, 18 (S3), A411–A420. 10.1364/OE.18.00A411. [DOI] [PubMed] [Google Scholar]
  48. Guo Q.; Ford G. M.; Agrawal R.; Hillhouse H. W. Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks. Prog. Photovoltaics Res. Appl. 2013, 21 (1), 64–71. 10.1002/pip.2200. [DOI] [Google Scholar]
  49. Wang Y. X.; Wei M.; Fan F. J.; Zhuang T. T.; Wu L.; Yu S. H.; Zhu C. F. Phase-Selective Synthesis of Cu2ZnSnS4 Nanocrystals through Cation Exchange for Photovoltaic Devices. Chem. Mater. 2014, 26 (19), 5492–5498. 10.1021/cm501424n. [DOI] [Google Scholar]
  50. Anand A.; Zaffalon M. L.; Gariano G.; Camellini A.; Gandini M.; Brescia R.; Capitani C.; Bruni F.; Pinchetti V.; Zavelani-Rossi M.; Meinardi F.; Crooker S. A.; Brovelli S. Evidence for the Band-Edge Exciton of CuInS2 Nanocrystals Enables Record Efficient Large-Area Luminescent Solar Concentrators Nanocrystals Enables Record Efficient Large-Area Luminescent Solar Concentrators. Adv. Funct. Mater. 2020, 30 (4), 1906629. 10.1002/adfm.201906629. [DOI] [Google Scholar]
  51. Meinardi F.; Colombo A.; Velizhanin K. A.; Simonutti R.; Lorenzon M.; Beverina L.; Viswanatha R.; Klimov V. I.; Brovelli S. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399. 10.1038/nphoton.2014.54. [DOI] [Google Scholar]
  52. McKenna B.; Evans R. C. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Adv. Mater. 2017, 29 (28), 1606491. 10.1002/adma.201606491. [DOI] [PubMed] [Google Scholar]
  53. Wu K. F.; Li H. B.; Klimov V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12 (2), 105–110. 10.1038/s41566-017-0070-7. [DOI] [Google Scholar]
  54. Debije M. Better luminescent solar panels in prospect. Nature 2015, 519 (7543), 298–299. 10.1038/519298a. [DOI] [PubMed] [Google Scholar]
  55. Meinardi F.; Bruni F.; Brovelli S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. 10.1038/natrevmats.2017.72. [DOI] [Google Scholar]
  56. Pritchard J.; Simon K.; Dowd C.; Joshi E. Solar power concentrators for space applications. PAM Rev. Energy Sci. Technol. 2016, 3, 2–26. 10.5130/pamr.v3i0.1413. [DOI] [Google Scholar]
  57. Cambié D.; Zhao F.; Hessel V.; Debije M. G.; Noël T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew. Chem., Int. Ed. 2017, 56 (4), 1050–1054. 10.1002/anie.201611101. [DOI] [PubMed] [Google Scholar]
  58. Weber W. H.; Lambe J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15 (10), 2299–2300. 10.1364/AO.15.002299. [DOI] [PubMed] [Google Scholar]
  59. Batchelder J. S.; Zewai A. H.; Cole T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl. Opt. 1979, 18 (18), 3090–3110. 10.1364/AO.18.003090. [DOI] [PubMed] [Google Scholar]
  60. Currie M. J.; Mapel J. K.; Heidel T. D.; Goffri S.; Baldo M. A. High-Efficiency Organic Solar Concentrators for Photovoltaics. Science 2008, 321 (5886), 226–228. 10.1126/science.1158342. [DOI] [PubMed] [Google Scholar]
  61. Li H.; Wu K.; Lim J.; Song H.-J.; Klimov V. I. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 2016, 1, 16157. 10.1038/nenergy.2016.157. [DOI] [Google Scholar]
  62. Lim J.; Park Y.-S.; Klimov V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49. 10.1038/nmat5011. [DOI] [PubMed] [Google Scholar]
  63. Meinardi F.; McDaniel H.; Carulli F.; Colombo A.; Velizhanin K. A.; Makarov N. S.; Simonutti R.; Klimov V. I.; Brovelli S. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 2015, 10 (10), 878–885. 10.1038/nnano.2015.178. [DOI] [PubMed] [Google Scholar]
  64. Du J.; Du Z.; Hu J.-S.; Pan Z.; Shen Q.; Sun J.; Long D.; Dong H.; Sun L.; Zhong X.; Wan L.-J. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. J. Am. Chem. Soc. 2016, 138 (12), 4201–4209. 10.1021/jacs.6b00615. [DOI] [PubMed] [Google Scholar]
  65. Zhao K.; Pan Z.; Mora-Seró I.; Cánovas E.; Wang H.; Song Y.; Gong X.; Wang J.; Bonn M.; Bisquert J.; Zhong X. Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. J. Am. Chem. Soc. 2015, 137 (16), 5602–5609. 10.1021/jacs.5b01946. [DOI] [PubMed] [Google Scholar]
  66. Dong H.; Xu F.; Sun Z.; Wu X.; Zhang Q.; Zhai Y.; Tan X. D.; He L.; Xu T.; Zhang Z.; Duan X.; Sun L. In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nat. Nanotechnol. 2019, 14 (10), 950–956. 10.1038/s41565-019-0526-7. [DOI] [PubMed] [Google Scholar]
  67. O’Regan B.; Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737–740. 10.1038/353737a0. [DOI] [Google Scholar]
  68. Rasal A. S.; Yadav S.; Kashale A. A.; Altaee A.; Chang J.-Y. Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy 2022, 94, 106854. 10.1016/j.nanoen.2021.106854. [DOI] [Google Scholar]
  69. Tian J.; Gao R.; Zhang Q.; Zhang S.; Li Y.; Lan J.; Qu X.; Cao G. Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film. J. Phys. Chem. C 2012, 116 (35), 18655–18662. 10.1021/jp3058838. [DOI] [Google Scholar]
  70. Abate M. A.; Dehvari K.; Chang J.-Y.; Waki K. Aqueous synthesis of Mn-doped CuInSe2 quantum dots to enhance the performance of quantum dot sensitized solar cells. Dalton Trans. 2019, 48 (42), 16115–16122. 10.1039/C9DT03163D. [DOI] [PubMed] [Google Scholar]
  71. Yan X.; Cui X.; Li B.; Li L.-s. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett. 2010, 10 (5), 1869–1873. 10.1021/nl101060h. [DOI] [PubMed] [Google Scholar]
  72. Song H.; Lin Y.; Zhou M.; Rao H.; Pan Z.; Zhong X. Zn-Cu-In-S-Se Quinary “Green” Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%. Angew. Chem., Int. Ed. 2021, 60 (11), 6137–6144. 10.1002/anie.202014723. [DOI] [PubMed] [Google Scholar]
  73. McDaniel H.; Fuke N.; Makarov N. S.; Pietryga J. M.; Klimov V. I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nat. Commun. 2013, 4 (1), 2887. 10.1038/ncomms3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Song H.; Lin Y.; Zhang Z.; Rao H.; Wang W.; Fang Y.; Pan Z.; Zhong X. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. J. Am. Chem. Soc. 2021, 143 (12), 4790–4800. 10.1021/jacs.1c01214. [DOI] [PubMed] [Google Scholar]
  75. Pan Z.; Yue L.; Rao H.; Zhang J.; Zhong X.; Zhu Z.; Jen A. K. Y. Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Adv. Mater. 2019, 31 (49), 1903696. 10.1002/adma.201903696. [DOI] [PubMed] [Google Scholar]
  76. Wang W.; Zhao L.; Wang Y.; Xue W.; He F.; Xie Y.; Li Y. Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. J. Am. Chem. Soc. 2019, 141 (10), 4300–4307. 10.1021/jacs.8b10901. [DOI] [PubMed] [Google Scholar]
  77. Kim J.-Y.; Yang J.; Yu J. H.; Baek W.; Lee C.-H.; Son H. J.; Hyeon T.; Ko M. J. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. ACS Nano 2015, 9 (11), 11286–11295. 10.1021/acsnano.5b04917. [DOI] [PubMed] [Google Scholar]
  78. Jara D. H.; Yoon S. J.; Stamplecoskie K. G.; Kamat P. V. Size-Dependent Photovoltaic Performance of CuInS2Quantum Dot-Sensitized Solar Cells. Chem. Mater. 2014, 26 (24), 7221–7228. 10.1021/cm5040886. [DOI] [Google Scholar]
  79. Andrei V.; Ucoski G. M.; Pornrungroj C.; Uswachoke C.; Wang Q.; Achilleos D. S.; Kasap H.; Sokol K. P.; Jagt R. A.; Lu H.; Lawson T.; Wagner A.; Pike S. D.; Wright D. S.; Hoye R. L. Z.; MacManus-Driscoll J. L.; Joyce H. J.; Friend R. H.; Reisner E. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 2022, 608 (7923), 518–522. 10.1038/s41586-022-04978-6. [DOI] [PubMed] [Google Scholar]
  80. Teitsworth T. S.; Hill D. J.; Litvin S. R.; Ritchie E. T.; Park J.-S.; Custer J. P.; Taggart A. D.; Bottum S. R.; Morley S. E.; Kim S.; McBride J. R.; Atkin J. M.; Cahoon J. F. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614 (7947), 270–274. 10.1038/s41586-022-05549-5. [DOI] [PubMed] [Google Scholar]
  81. Moss B.; Wang Q.; Butler K. T.; Grau-Crespo R.; Selim S.; Regoutz A.; Hisatomi T.; Godin R.; Payne D. J.; Kafizas A.; Domen K.; Steier L.; Durrant J. R. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 2021, 20 (4), 511–517. 10.1038/s41563-020-00868-2. [DOI] [PubMed] [Google Scholar]
  82. Kim T. W.; Choi K. S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343 (6174), 990–994. 10.1126/science.1246913. [DOI] [PubMed] [Google Scholar]
  83. Pandey A.; Guyot-Sionnest P. Slow Electron Cooling in Colloidal Quantum Dots. Science 2008, 322 (5903), 929–932. 10.1126/science.1159832. [DOI] [PubMed] [Google Scholar]
  84. Wu H.-L.; Li X.-B.; Tung C.-H.; Wu L.-Z. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. Adv. Sci. 2018, 5 (4), 1700684. 10.1002/advs.201700684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Zhang J. H.; Zhang M.; Dong Y. Y.; Bai C. C.; Feng Y. Q.; Jiao L.; Lv H. J. CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen. Nano Res. 2022, 15 (2), 1347–1354. 10.1007/s12274-021-3663-x. [DOI] [Google Scholar]
  86. Luo B.; Liu J.; Guo H.; Liu X.; Song R.; Shen K.; Wang Z. M.; Jing D.; Selopal G. S.; Rosei F. High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn-In-Se colloidal quantum dots. Nano Energy 2021, 88, 106220. 10.1016/j.nanoen.2021.106220. [DOI] [Google Scholar]
  87. Ghorpade U. V.; Suryawanshi M. P.; Shin S. W.; Kim J.; Kang S. H.; Ha J.-S.; Kolekar S. S.; Kim J. H. Unassisted visible solar water splitting with efficient photoelectrodes sensitized by quantum dots synthesized via an environmentally friendly eutectic solvent-mediated approach. J. Mater. Chem. A 2018, 6 (45), 22566–22579. 10.1039/C8TA05901B. [DOI] [Google Scholar]
  88. Gao Y.; Wang J.; Mo S.; Wang F.; Long F.; Zou Z. Synthesis of High-Quality Wurtzite Cu2ZnSn(S1-x,Sex)4 Nanocrystals With Non-Toxic Selenium Precursor and the Photoelectrochemical Performance of ZnO NAs/CZTSSe Heterojunction. Solar RRL 2018, 2 (7), 1800015. 10.1002/solr.201800015. [DOI] [Google Scholar]
  89. Zhao H. G.; Liu G. J.; Vidal F.; Wang Y. Q.; Vomiero A. Colloidal thick-shell pyramidal quantum dots for efficient hydrogen production. Nano Energy 2018, 53, 116–124. 10.1016/j.nanoen.2018.08.042. [DOI] [Google Scholar]
  90. Li S.; Jung S. M.; Chung W.; Seo J. W.; Kim H.; Park S. I.; Lee H. C.; Han J. S.; Ha S. B.; Kim I. Y.; In S. I.; Kim J. Y.; Yang J. Defect engineering of ternary Cu-In-Se quantum dots for boosting photoelectrochemical hydrogen generation. Carbon Energy 2023, 5 (12), e384 10.1002/cey2.384. [DOI] [Google Scholar]
  91. Guo H.; Liu J.; Luo B.; Huang X.; Yang J.; Chen H.; Shi L.; Liu X.; Benetti D.; Zhou Y.; Selopal G. S.; Rosei F.; Wang Z.; Niu X. Unlocking the effects of Cu doping in heavy-metal-free AgIn5S8 quantum dots for highly efficient photoelectrochemical solar energy conversion. J. Mater. Chem. C 2021, 9 (30), 9610–9618. 10.1039/D1TC01624E. [DOI] [Google Scholar]
  92. Ng C.; Yun J.-H.; Tan H. L.; Wu H.; Amal R.; Ng Y. H. A dual-electrolyte system for photoelectrochemical hydrogen generation using CuInS2-In2O3-TiO2 nanotube array thin film. Sci. China Mater. 2018, 61 (6), 895–904. 10.1007/s40843-017-9237-2. [DOI] [Google Scholar]
  93. Kim J.; Jang Y. J.; Baek W.; Lee A. R.; Kim J. Y.; Hyeon T.; Lee J. S. Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn1.5Se3 Quantum Dots with ZnS/SiO2 Double Overlayers. ACS Appl. Mater. Interfaces 2022, 14 (1), 603–610. 10.1021/acsami.1c16976. [DOI] [PubMed] [Google Scholar]
  94. Kim J. S.; Baek S. K.; Kim Y. B.; Do H. W.; Kwon Y. H.; Cho S. W.; Yun Y. D.; Yoon J. H.; Lee H.-B.-R.; Kim S.-W.; Cho H. K. Copper indium selenide water splitting photoanodes with artificially designed heterophasic blended structure and their high photoelectrochemical performances. Nano Energy 2018, 46, 1–10. 10.1016/j.nanoen.2018.01.023. [DOI] [Google Scholar]
  95. Tong X.; Zhou Y.; Jin L.; Basu K.; Adhikari R.; Selopal G. S.; Tong X.; Zhao H.; Sun S.; Vomiero A.; Wang Z. M.; Rosei F. Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 2017, 31, 441–449. 10.1016/j.nanoen.2016.11.053. [DOI] [Google Scholar]
  96. Li F.; Zhang M.; Benetti D.; Shi L.; Besteiro L. V.; Zhang H.; Liu J.; Selopal G. S.; Sun S.; Wang Z.; Wei Q.; Rosei F. Green”, gradient multi-shell CuInSe2/(CuInSexS1-x)5/CuInS2 quantum dots for photo-electrochemical hydrogen generation. Appl. Catal., B 2021, 280, 119402. 10.1016/j.apcatb.2020.119402. [DOI] [Google Scholar]
  97. Wang R.; Tong X.; Channa A. I.; Zeng Q.; Sun J.; Liu C.; Li X.; Xu J.; Lin F.; Selopal G. S.; Rosei F.; Zhang Y.; Wu J.; Zhao H.; Vomiero A.; Sun X.; Wang Z. M. Environmentally friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells. J. Mater. Chem. A 2020, 8 (21), 10736–10741. 10.1039/D0TA00953A. [DOI] [Google Scholar]
  98. Zhao H. G.; Zhang H.; Liu G. J.; Tong X.; Liu J. B.; Selopal G. S.; Wang Y. Q.; Wang Z. M. M.; Sun S. H.; Rosei F. Ultra-small colloidal heavy-metal-free nanoplatelets for efficient hydrogen generation. Appl. Catal., B 2019, 250, 234–241. 10.1016/j.apcatb.2019.03.028. [DOI] [Google Scholar]
  99. Sun X.; Zhang X.; Xie Y. Surface Defects in Two-Dimensional Photocatalysts for Efficient Organic Synthesis. Matter 2020, 2 (4), 842–861. 10.1016/j.matt.2020.02.006. [DOI] [Google Scholar]
  100. Xiao Y. Q.; Feng C.; Fu J.; Wang F. Z.; Li C. L.; Kunzelmann V. F.; Jiang C. M.; Nakabayashi M.; Shibata N.; Sharp I. D.; Domen K.; Li Y. B. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3 (11), 932–940. 10.1038/s41929-020-00522-9. [DOI] [Google Scholar]
  101. Gao W.; Li S.; He H.; Li X.; Cheng Z.; Yang Y.; Wang J.; Shen Q.; Wang X.; Xiong Y.; Zhou Y.; Zou Z. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 2021, 12 (1), 4747. 10.1038/s41467-021-25068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Kelkar S.; Ballal C.; Deshpande A.; Warule S.; Ogale S. Quantum dot CdS coupled Cd2SnO4 photoanode with high photoelectrochemical water splitting efficiency. J. Mater. Chem. A 2013, 1 (40), 12426–12431. 10.1039/c3ta12793a. [DOI] [Google Scholar]
  103. Jiang A. Q.; Guo H.; Yu S.; Zhang F. Y.; Shuai T. Y.; Ke Y. B.; Yang P.; Zhou Y. Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Appl. Catal., B 2023, 332, 122747. 10.1016/j.apcatb.2023.122747. [DOI] [Google Scholar]
  104. Fan X. B.; Yu S.; Zhan F.; Li Z. J.; Gao Y. J.; Li X. B.; Zhang L. P.; Tao Y.; Tung C. H.; Wu L. Z. Nonstoichiometric Cu(x) In(y) S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10 (24), 4833–4838. 10.1002/cssc.201701950. [DOI] [PubMed] [Google Scholar]
  105. Liu Z.; Liu J.; Huang Y.; Li J.; Yuan Y.; Ye H.; Zhu D.; Wang Z.; Tang A. From one-dimensional to two-dimensional wurtzite CuGaS2nanocrystals: non-injection synthesis and photocatalytic evolution. Nanoscale 2019, 11 (1), 158–169. 10.1039/C8NR07353H. [DOI] [PubMed] [Google Scholar]
  106. Colombara D.; Elanzeery H.; Nicoara N.; Sharma D.; Claro M.; Schwarz T.; Koprek A.; Wolter M. H.; Melchiorre M.; Sood M.; Valle N.; Bondarchuk O.; Babbe F.; Spindler C.; Cojocaru-Miredin O.; Raabe D.; Dale P. J.; Sadewasser S.; Siebentritt S. Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface. Nat. Commun. 2020, 11 (1), 3634. 10.1038/s41467-020-17434-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Cahen D.; Gilet J.-M.; Schmitz C.; Chernyak L.; Gartsman K.; Jakubowicz A. Room-Temperature, Electric Field-Induced Creation of Stable Devices in CulnSe2 Crystals. Science 1992, 258 (5080), 271–274. 10.1126/science.258.5080.271. [DOI] [PubMed] [Google Scholar]
  108. Qu S.; Yuan X.; Li Y.; Li X.; Zhou X.; Xue X.; Zhang K.; Xu J.; Yuan C. Aqueous synthesis of composition-tuned defects in CuInSe2 nanocrystals for enhanced visible-light photocatalytic H2 evolution. Nanoscale Adv. 2021, 3 (8), 2334–2342. 10.1039/D1NA00069A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Franklin A. D. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349 (6249), aab2750. 10.1126/science.aab2750. [DOI] [PubMed] [Google Scholar]
  110. Ko H.; Takei K.; Kapadia R.; Chuang S.; Fang H.; Leu P. W.; Ganapathi K.; Plis E.; Kim H. S.; Chen S. Y.; Madsen M.; Ford A. C.; Chueh Y. L.; Krishna S.; Salahuddin S.; Javey A. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 2010, 468 (7321), 286–9. 10.1038/nature09541. [DOI] [PubMed] [Google Scholar]
  111. Shimoda T.; Matsuki Y.; Furusawa M.; Aoki T.; Yudasaka I.; Tanaka H.; Iwasawa H.; Wang D.; Miyasaka M.; Takeuchi Y. Solution-processed silicon films and transistors. Nature 2006, 440 (7085), 783–786. 10.1038/nature04613. [DOI] [PubMed] [Google Scholar]
  112. Jacobson M. Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2 (2), 148–173. 10.1039/B809990C. [DOI] [Google Scholar]
  113. Vicarelli L.; Vitiello M. S.; Coquillat D.; Lombardo A.; Ferrari A. C.; Knap W.; Polini M.; Pellegrini V.; Tredicucci A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11 (10), 865–871. 10.1038/nmat3417. [DOI] [PubMed] [Google Scholar]
  114. Ferain I.; Colinge C. A.; Colinge J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479 (7373), 310–6. 10.1038/nature10676. [DOI] [PubMed] [Google Scholar]
  115. Desai S. B.; Madhvapathy S. R.; Sachid A. B.; Llinas J. P.; Wang Q.; Ahn G. H.; Pitner G.; Kim M. J.; Bokor J.; Hu C.; Wong H.-S. P.; Javey A. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99–102. 10.1126/science.aah4698. [DOI] [PubMed] [Google Scholar]
  116. Jia X.; Fuentes-Hernandez C.; Wang C.-Y.; Park Y.; Kippelen B. Stable organic thin-film transistors. Sci. Adv. 2018, 4 (1), eaao1705 10.1126/sciadv.aao1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Ning Z.; Voznyy O.; Pan J.; Hoogland S.; Adinolfi V.; Xu J.; Li M.; Kirmani A. R.; Sun J. P.; Minor J.; Kemp K. W.; Dong H.; Rollny L.; Labelle A.; Carey G.; Sutherland B.; Hill I.; Amassian A.; Liu H.; Tang J.; Bakr O. M.; Sargent E. H. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13 (8), 822–8. 10.1038/nmat4007. [DOI] [PubMed] [Google Scholar]
  118. Moon H.; Lee C.; Lee W.; Kim J.; Chae H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31 (34), 1804294. 10.1002/adma.201804294. [DOI] [PubMed] [Google Scholar]
  119. Talapin D. V.; Lee J. S.; Kovalenko M. V.; Shevchenko E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110 (1), 389–458. 10.1021/cr900137k. [DOI] [PubMed] [Google Scholar]
  120. Choi J.-H.; Wang H.; Oh S. J.; Paik T.; Sung P.; Sung J.; Ye X.; Zhao T.; Diroll B. T.; Murray C. B.; Kagan C. R. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352 (6282), 205–208. 10.1126/science.aad0371. [DOI] [PubMed] [Google Scholar]
  121. Dolzhnikov D. S.; Zhang H.; Jang J.; Son J. S.; Panthani M. G.; Shibata T.; Chattopadhyay S.; Talapin D. V. Composition-matched molecular “solders” for semiconductors. Science 2015, 347 (6220), 425–428. 10.1126/science.1260501. [DOI] [PubMed] [Google Scholar]
  122. Wang Y.; Fedin I.; Zhang H.; Talapin D. V. Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357 (6349), 385–388. 10.1126/science.aan2958. [DOI] [PubMed] [Google Scholar]
  123. Talapin D. V.; Murray C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310 (5745), 86–9. 10.1126/science.1116703. [DOI] [PubMed] [Google Scholar]
  124. Lee H. J.; Im S.; Jung D.; Kim K.; Chae J. A.; Lim J.; Park J. W.; Shin D.; Char K.; Jeong B. G.; Park J.-S.; Hwang E.; Lee D. C.; Park Y.-S.; Song H.-J.; Chang J. H.; Bae W. K. Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat. Commun. 2023, 14 (1), 3779. 10.1038/s41467-023-39509-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Draguta S.; McDaniel H.; Klimov V. I. Tuning carrier mobilities and polarity of charge transport in films of CuInSe(x)S(2-x) quantum dots. Adv. Mater. 2015, 27 (10), 1701–5. 10.1002/adma.201404878. [DOI] [PubMed] [Google Scholar]
  126. Yarema O.; Yarema M.; Bozyigit D.; Lin W. M.; Wood V. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals. ACS Nano 2015, 9 (11), 11134–42. 10.1021/acsnano.5b04636. [DOI] [PubMed] [Google Scholar]
  127. Zhong H.; Wang Z.; Bovero E.; Lu Z.; van Veggel F. C. J. M.; Scholes G. D. Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence. J. Phys. Chem. C 2011, 115 (25), 12396–12402. 10.1021/jp204249j. [DOI] [Google Scholar]
  128. Wang H.; Butler D. J.; Straus D. B.; Oh N.; Wu F.; Guo J.; Xue K.; Lee J. D.; Murray C. B.; Kagan C. R. Air-Stable CuInSe2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange. ACS Nano 2019, 13 (2), 2324–2333. 10.1021/acsnano.8b09055. [DOI] [PubMed] [Google Scholar]
  129. Yun H. J.; Lim J.; Fuhr A. S.; Makarov N. S.; Keene S.; Law M.; Pietryga J. M.; Klimov V. I. Charge-Transport Mechanisms in CuInSexS2-x Quantum-Dot Films. ACS Nano 2018, 12 (12), 12587–12596. 10.1021/acsnano.8b07179. [DOI] [PubMed] [Google Scholar]
  130. Zito J.; Infante I. The Future of Ligand Engineering in Colloidal Semiconductor Nanocrystals. Acc. Chem. Res. 2021, 54 (7), 1555–1564. 10.1021/acs.accounts.0c00765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Wang W.; Zhang M.; Pan Z.; Biesold G. M.; Liang S.; Rao H.; Lin Z.; Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem. Rev. 2022, 122 (3), 4091–4162. 10.1021/acs.chemrev.1c00478. [DOI] [PubMed] [Google Scholar]
  132. Ong W.-L.; Rupich S. M.; Talapin D. V.; McGaughey A. J.; Malen J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 2013, 12 (5), 410–415. 10.1038/nmat3596. [DOI] [PubMed] [Google Scholar]
  133. Kim T.; Kim K.-H.; Kim S.; Choi S.-M.; Jang H.; Seo H.-K.; Lee H.; Chung D.-Y.; Jang E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586 (7829), 385–389. 10.1038/s41586-020-2791-x. [DOI] [PubMed] [Google Scholar]
  134. Jung H.; Ahn N.; Klimov V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15 (9), 643–655. 10.1038/s41566-021-00827-6. [DOI] [Google Scholar]
  135. Xu H.; Song J.; Zhou P.; Song Y.; Xu J.; Shen H.; Fang S.; Gao Y.; Zuo Z.; Pina J. M.; Voznyy O.; Yang C.; Hu Y.; Li J.; Du J.; Sargent E. H.; Fan F. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18 (2), 186–191. 10.1038/s41566-023-01344-4. [DOI] [Google Scholar]
  136. Dai X. L.; Zhang Z. X.; Jin Y. Z.; Niu Y.; Cao H. J.; Liang X. Y.; Chen L. W.; Wang J. P.; Peng X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515 (7525), 96–99. 10.1038/nature13829. [DOI] [PubMed] [Google Scholar]
  137. Hanifi D. A.; Bronstein N. D.; Koscher B. A.; Nett Z.; Swabeck J. K.; Takano K.; Schwartzberg A. M.; Maserati L.; Vandewal K.; van de Burgt Y.; Salleo A.; Alivisatos A. P. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 2019, 363 (6432), 1199–1202. 10.1126/science.aat3803. [DOI] [PubMed] [Google Scholar]
  138. Gao Y.; Li B.; Liu X. A.; Shen H. B.; Song Y.; Song J. J.; Yan Z. J.; Yan X. H.; Chong Y. H.; Yao R. Y.; Wang S. J.; Li L. S.; Fan F. J.; Du Z. L. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 2023, 18 (10), 1168–1174. 10.1038/s41565-023-01441-z. [DOI] [PubMed] [Google Scholar]
  139. Xia C. H.; Tamarat P.; Hou L.; Busatto S.; Meeldijk J. D.; Donega C. D.; Lounis B. Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots. ACS Nano 2021, 15 (11), 17573–17581. 10.1021/acsnano.1c04909. [DOI] [PubMed] [Google Scholar]
  140. Zhong H.; Bai Z.; Zou B. Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. J. Phys. Chem. Lett. 2012, 3 (21), 3167–3175. 10.1021/jz301345x. [DOI] [PubMed] [Google Scholar]
  141. Chen B.; Pradhan N.; Zhong H. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. J. Phys. Chem. Lett. 2018, 9 (2), 435–445. 10.1021/acs.jpclett.7b03037. [DOI] [PubMed] [Google Scholar]
  142. Tong X.; Kong X.-T.; Zhou Y.; Navarro-Pardo F.; Selopal G. S.; Sun S.; Govorov A. O.; Zhao H.; Wang Z. M.; Rosei F. Near-Infrared, Heavy Metal-Free Colloidal “Giant” Core/Shell Quantum Dots. Adv. Energy Mater. 2018, 8 (2), 1701432. 10.1002/aenm.201701432. [DOI] [Google Scholar]
  143. Allen P. M.; Bawendi M. G. Ternary I- III- VI quantum dots luminescent in the red to near-infrared. J. Am. Chem. Soc. 2008, 130 (29), 9240–9241. 10.1021/ja8036349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Nose K.; Omata T.; Otsuka-Yao-Matsuo S. Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties. J. Phys. Chem. C 2009, 113 (9), 3455–3460. 10.1021/jp809398k. [DOI] [Google Scholar]
  145. Cassette E.; Pons T.; Bouet C.; Helle M.; Bezdetnaya L.; Marchal F.; Dubertret B. Synthesis and characterization of near-infrared Cu- In- Se/ZnS core/shell quantum dots for in vivo imaging. Chem. Mater. 2010, 22 (22), 6117–6124. 10.1021/cm101881b. [DOI] [Google Scholar]
  146. Park J.; Dvoracek C.; Lee K. H.; Galloway J. F.; Bhang H. E.; Pomper M. G.; Searson P. C. CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small 2011, 7 (22), 3148–52. 10.1002/smll.201101558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Wang L.; Cao X.; Liu Z.; Wang Y.; Xiong P.; Li X.; Gao W.; Tang B. Dual near infrared emission in Ag2Se quantum dots via Pb doping for broadband mini light-emitting diodes. Chem. Commun. 2022, 58 (60), 8432–8435. 10.1039/D2CC02804B. [DOI] [PubMed] [Google Scholar]
  148. Wang L.; Cao X.; Liu Z.; Wang Y.; Xiong P.; Gao W.; Tang B. Enhancement and broadening of near infrared photoluminescence in Ag2X (X= S, Se) quantum dots via Cd doping for mini light-emitting diodes towads non-invasive bioimaging. J. Lumin. 2022, 252, 119325. 10.1016/j.jlumin.2022.119325. [DOI] [Google Scholar]
  149. Huang W.-T.; Yoon S.-Y.; Wu B.-H.; Lu K.-M.; Lin C.-M.; Yang H.; Liu R.-S. Ultra-broadband near-infrared emission CuInS2/ZnS quantum dots with high power efficiency and stability for the theranostic applications of mini light-emitting diodes. Chem. Commun. 2020, 56 (59), 8285–8288. 10.1039/D0CC03030A. [DOI] [PubMed] [Google Scholar]
  150. Kim M.; Lee G. J.; Choi C.; Kim M. S.; Lee M.; Liu S.; Cho K. W.; Kim H. M.; Cho H.; Choi M. K.; Lu N.; Song Y. M.; Kim D.-H. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electronics 2020, 3 (9), 546–553. 10.1038/s41928-020-0429-5. [DOI] [Google Scholar]
  151. Geiger S.; Michon J.; Liu S.; Qin J.; Ni J.; Hu J.; Gu T.; Lu N. Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics 2020, 7 (10), 2618–2635. 10.1021/acsphotonics.0c00983. [DOI] [Google Scholar]
  152. Cai S.; Xu X.; Yang W.; Chen J.; Fang X. Materials and Designs for Wearable Photodetectors. Adv. Mater. 2019, 31 (18), 1808138. 10.1002/adma.201808138. [DOI] [PubMed] [Google Scholar]
  153. Michel J.; Liu J.; Kimerling L. C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4 (8), 527–534. 10.1038/nphoton.2010.157. [DOI] [Google Scholar]
  154. Sukhovatkin V.; Hinds S.; Brzozowski L.; Sargent E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 2009, 324 (5934), 1542–4. 10.1126/science.1173812. [DOI] [PubMed] [Google Scholar]
  155. Roy K.; Padmanabhan M.; Goswami S.; Sai T. P.; Ramalingam G.; Raghavan S.; Ghosh A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8 (11), 826–830. 10.1038/nnano.2013.206. [DOI] [PubMed] [Google Scholar]
  156. Mueller T.; Xia F.; Avouris P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4 (5), 297–301. 10.1038/nphoton.2010.40. [DOI] [Google Scholar]
  157. Guo R. Q.; Huang F.; Zheng K. B.; Pullerits T.; Tian J. J. CuInSe2 Quantum Dots Hybrid Hole Transfer Layer for Halide Perovskite Photodetectors. ACS Appl. Mater. Interfaces 2018, 10 (41), 35656–35663. 10.1021/acsami.8b13777. [DOI] [PubMed] [Google Scholar]
  158. Liu M.; Yazdani N.; Yarema M.; Jansen M.; Wood V.; Sargent E. H. Colloidal quantum dot electronics. Nat. Electronics 2021, 4 (8), 548–558. 10.1038/s41928-021-00632-7. [DOI] [Google Scholar]
  159. Park Y. S.; Roh J.; Diroll B. T.; Schaller R. D.; Klimov V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6 (5), 382–401. 10.1038/s41578-020-00274-9. [DOI] [Google Scholar]
  160. Kim J. Y.; Voznyy O.; Zhitomirsky D.; Sargent E. H. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances. Adv. Mater. 2013, 25 (36), 4986–5010. 10.1002/adma.201301947. [DOI] [PubMed] [Google Scholar]
  161. McDonald S. A.; Konstantatos G.; Zhang S.; Cyr P. W.; Klem E. J.; Levina L.; Sargent E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4 (2), 138–42. 10.1038/nmat1299. [DOI] [PubMed] [Google Scholar]
  162. Clifford J. P.; Konstantatos G.; Johnston K. W.; Hoogland S.; Levina L.; Sargent E. H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 2009, 4 (1), 40–4. 10.1038/nnano.2008.313. [DOI] [PubMed] [Google Scholar]
  163. Liu H.; Yu M. M.; Qn F. L.; Feng W.; Hu P. A. Two-Dimensional Nonlayered CuInSe2 Nanosheets for High-Performance Photodetectors. ACS Appl. Nano Mater. 2018, 1 (10), 5414–5418. 10.1021/acsanm.8b01527. [DOI] [Google Scholar]
  164. Bi W.; Zhou M.; Ma Z.; Zhang H.; Yu J.; Xie Y. CuInSe2 ultrathin nanoplatelets: novel self-sacrificial template-directed synthesis and application for flexible photodetectors. Chem. Commun. 2012, 48 (73), 9162–4. 10.1039/c2cc34727j. [DOI] [PubMed] [Google Scholar]
  165. Lei S.; Sobhani A.; Wen F.; George A.; Wang Q.; Huang Y.; Dong P.; Li B.; Najmaei S.; Bellah J.; Gupta G.; Mohite A. D.; Ge L.; Lou J.; Halas N. J.; Vajtai R.; Ajayan P. Ternary CuIn7Se11: towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26 (45), 7666–72. 10.1002/adma.201403342. [DOI] [PubMed] [Google Scholar]

Articles from ACS Omega are provided here courtesy of American Chemical Society

RESOURCES