Abstract
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behrman H. R., Ohkawa R., Preston S. L., MacDonald G. J. Transport and selective utilization of adenosine as a prosubstrate for luteinizing hormone-sensitive adenylate cyclase in the luteal cell. Endocrinology. 1983 Sep;113(3):1132–1140. doi: 10.1210/endo-113-3-1132. [DOI] [PubMed] [Google Scholar]
- Cooke B. A., Lindh L. M., Janszen F. H., van Driel M. J., Bakker C. P., van der Plank M. P., van der Molen H. J. A Leydig cell tumour: a model for the study of lutropin action. Biochim Biophys Acta. 1979 Mar 22;583(3):320–331. doi: 10.1016/0304-4165(79)90456-2. [DOI] [PubMed] [Google Scholar]
- Dix C. J., Cooke B. A. Effect of lutropin and cycloheximide on lutropin receptors and cyclic AMP production in Leydig tumour cells in vitro. Biochem J. 1981 Jun 15;196(3):713–719. doi: 10.1042/bj1960713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix C. J., Cooke B. A. Resensitization of lutropin-desensitized tumour Leydig-cell adenylate cyclase with human erythrocyte membranes. Biochem J. 1982 May 15;204(2):613–616. doi: 10.1042/bj2040613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix C. J., Habberfield A. D., Cooke B. A. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase. Biochem J. 1984 Jun 15;220(3):803–809. doi: 10.1042/bj2200803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix C. J., Schumacher M., Cooke B. A. Desensitization of tumour Leydig cells by lutropin: evidence for uncoupling of the lutropin receptor from the guanine nucleotide-binding protein. Biochem J. 1982 Mar 15;202(3):739–745. doi: 10.1042/bj2020739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain J. N., Malbon C. C. Regulation of adenylate cyclase by adenosine. Mol Cell Biochem. 1979 Jun 15;25(3):143–169. doi: 10.1007/BF00235364. [DOI] [PubMed] [Google Scholar]
- Florio V. A., Ross E. M. Regulation of the catalytic component of adenylate cyclase. Potentiative interaction of stimulatory ligands and 2',5'-dideoxyadenosine. Mol Pharmacol. 1983 Sep;24(2):195–202. [PubMed] [Google Scholar]
- Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
- Heyworth C. M., Houslay M. D. Challenge of hepatocytes by glucagon triggers a rapid modulation of adenylate cyclase activity in isolated membranes. Biochem J. 1983 Jul 15;214(1):93–98. doi: 10.1042/bj2140093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
- Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Su Y. F., Harden T. K., Perkins J. P. Catecholamine-specific desensitization of adenylate cyclase. Evidence for a multistep process. J Biol Chem. 1980 Aug 10;255(15):7410–7419. [PubMed] [Google Scholar]
- Wallace A. V., Heyworth C. M., Houslay M. D. N6-(Phenylisopropyl)adenosine prevents glucagon both blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase and uncoupling hormonal stimulation of adenylate cyclase activity in hepatocytes. Biochem J. 1984 Aug 15;222(1):177–182. doi: 10.1042/bj2220177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Mazancourt P., Giudicelli Y. Guanine nucleotides and adenosine "R(i)'-site analogues stimulate the membrane-bound low-K(m) cyclic AMP phosphodiesterase of rat adipocytes. FEBS Lett. 1984 Aug 6;173(2):385–388. doi: 10.1016/0014-5793(84)80810-8. [DOI] [PubMed] [Google Scholar]
