Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Oct 1;231(1):11–17. doi: 10.1042/bj2310011

Effect of 1,25-dihydroxyvitamin D3 on cyclic AMP responses to hormones in clonal osteogenic sarcoma cells.

M Kubota, K W Ng, T J Martin
PMCID: PMC1152696  PMID: 2998336

Abstract

The effect of 1,25-dihydroxyvitamin D3 on adenylate cyclase responsiveness was studied in the clonal osteogenic sarcoma cell line, UMR 106-06, which responds to several bone active hormones. 1,25-dihydroxyvitamin D3 treatment had no consistent effect on basal formation of cyclic AMP in intact cells, but the responses to parathyroid hormone, isoproterenol, prostaglandin E2, salmon calcitonin and the plant diterpene, forskolin, were all attenuated, by up to 90%. The effect of 1,25-dihydroxyvitamin D3 was dose-dependent, with half-maximal effectiveness at 0.1 nM, and required 48 h treatment of cells before it became apparent. The relative potencies of other vitamin D3 compounds correlated closely with their relative affinities for the 1,25-dihydroxyvitamin D3 receptor and their biological activities in other systems. 1,25-dihydroxyvitamin D3 treatment had no effect on the kinetics of labelled calcitonin binding to UMR 106-06 cells. Furthermore, the fact that such a range of hormones was affected made a receptor mediated mechanism unlikely. Nucleotide stimulatory (Ns) unit activity was assayed after 1,25-dihydroxyvitamin D3 treatment and found to be unchanged. Islet activating protein, an inhibitor of nucleotide inhibitory unit (Ni) activity, failed to modify the 1,25-dihydroxyvitamin D3 effect. Thus the effect of 1,25-dihydroxyvitamin D3 appeared to be exerted beyond hormone receptor and nucleotide regulatory components of the adenylate cyclase complex. It is concluded that 1,25-dihydroxyvitamin D3 attenuates adenylate cyclase response to hormones by a direct or indirect action on the catalytic component of adenylate cyclase.

Full text

PDF
10

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Katada T., Gilman A. G., Ross E. M. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. J Biol Chem. 1984 Aug 10;259(15):9351–9354. [PubMed] [Google Scholar]
  2. Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
  3. Bourne H. R., Coffino P., Tomkins G. M. Selection of a variant lymphoma cell deficient in adenylate cyclase. Science. 1975 Feb 28;187(4178):750–752. doi: 10.1126/science.163487. [DOI] [PubMed] [Google Scholar]
  4. Catherwood B. D. 1,25-Dihydroxycholecalciferol and glucocorticosteroid regulation of adenylate cyclase in an osteoblast-like cell line. J Biol Chem. 1985 Jan 25;260(2):736–743. [PubMed] [Google Scholar]
  5. Chase L. R., Fedak S. A., Aurbach G. D. Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinology. 1969 Apr;84(4):761–768. doi: 10.1210/endo-84-4-761. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. M., Schlegel W., Lin M. C., Rodbell M. The fat cell adenylate cyclase system. Characterization and manipulation of its bimodal regulation by GTP. J Biol Chem. 1979 Sep 25;254(18):8927–8931. [PubMed] [Google Scholar]
  7. Corradino R. A., DeLuca H. F., Tanaka Y., Ikekawa N., Kobayashi Y. A fluorinated vitamin D3 analog with biopotency greater than 1 alpha, 25-dihydroxy vitamin D3. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1800–1803. doi: 10.1016/0006-291x(80)91383-2. [DOI] [PubMed] [Google Scholar]
  8. Crowell J. A., Jr, Cooper C. W., Toverud S. U., Boass A. Influence of vitamin D on parathyroid hormone-induced adenosine 3',5'-monophosphate production by bone cells isolated from rat calvariae. Endocrinology. 1981 Nov;109(5):1715–1722. doi: 10.1210/endo-109-5-1715. [DOI] [PubMed] [Google Scholar]
  9. Daly J. W., Padgett W., Seamon K. B. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J Neurochem. 1982 Feb;38(2):532–544. doi: 10.1111/j.1471-4159.1982.tb08660.x. [DOI] [PubMed] [Google Scholar]
  10. Davies A. O., De Lean A., Lefkowitz R. J. Myocardial beta-adrenergic receptors from adrenalectomized rats: impaired formation of high-affinity agonist-receptor complexes. Endocrinology. 1981 Feb;108(2):720–722. doi: 10.1210/endo-108-2-720. [DOI] [PubMed] [Google Scholar]
  11. Eisman J. A., Martin T. J., MacIntyre I., Frampton R. J., Moseley J. M., Whitehead R. 1,25-Dihydroxyvitamin D3 receptor in a cultured human breast cancer cell line (MCF 7 cells). Biochem Biophys Res Commun. 1980 Mar 13;93(1):9–15. doi: 10.1016/s0006-291x(80)80238-5. [DOI] [PubMed] [Google Scholar]
  12. Forrest S. M., Ng K. W., Findlay D. M., Michelangeli V. P., Livesey S. A., Partridge N. C., Zajac J. D., Martin T. J. Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int. 1985 Jan;37(1):51–56. doi: 10.1007/BF02557679. [DOI] [PubMed] [Google Scholar]
  13. Herrmann-Erlee M. P., van der Meer J. M., Hekkelman J. W. In vitro studies of the adenosine 3',5'-monophosphate (cAMP) response of embryonic rat calvaria to bovine parathyroid hormone-(1--84) [bPTH-(1--84)], BPTH-(1--34), and bPTH-(3--34) and the loss of cAMP responsiveness after prolonged incubation. Endocrinology. 1980 Jun;106(6):2013–2018. doi: 10.1210/endo-106-6-2013. [DOI] [PubMed] [Google Scholar]
  14. Hildebrandt J. D., Hanoune J., Birnbaumer L. Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. J Biol Chem. 1982 Dec 25;257(24):14723–14725. [PubMed] [Google Scholar]
  15. Hunt N. H., Ellison M., Underwood J. C., Martin T. J. Calcitonin-responsive adenylate cyclase in a calcitonin-producing human cancer cell line. Br J Cancer. 1977 Jun;35(6):777–784. doi: 10.1038/bjc.1977.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iyengar R., Bhat M. K., Riser M. E., Birnbaumer L. Receptor-specific desensitization of the S49 lymphoma cell adenylyl cyclase. Unaltered behavior of the regulatory component. J Biol Chem. 1981 May 25;256(10):4810–4815. [PubMed] [Google Scholar]
  17. Kakuta S., Suda T., Sasaki S., Kimura N., Nagata N. Effects of parathyroid hormone on the accumulation of cyclic AMP in bone of vitamin D-deficient rats. Endocrinology. 1975 Nov;97(5):1288–1293. doi: 10.1210/endo-97-5-1288. [DOI] [PubMed] [Google Scholar]
  18. Katada T., Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem. 1982 Jun 25;257(12):7210–7216. [PubMed] [Google Scholar]
  19. Kent G. N., Jilka R. L., Cohn D. V. Homologous and heterologous control of bone cell adenosine 3',5'-monophosphate response to hormones by parathoromone, prostaglandin E2, calcitonin, and 1,25-dihydroxycholecalciferol. Endocrinology. 1980 Nov;107(5):1474–1481. doi: 10.1210/endo-107-5-1474. [DOI] [PubMed] [Google Scholar]
  20. Kirchick H. J., Birnbaumer L. Effects of estradiol treatment on rabbit luteal adenylyl cyclase: loss of luteinizing hormone receptors and attenuation of the regulatory N component activity. Endocrinology. 1983 Nov;113(5):1629–1637. doi: 10.1210/endo-113-5-1629. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lamp S. J., Findlay D. M., Moseley J. M., Martin T. J. Calcitonin induction of a persistent activated state of adenylate cyclase in human breast cancer cells (T 47D). J Biol Chem. 1981 Dec 10;256(23):12269–12274. [PubMed] [Google Scholar]
  23. Lieberherr M., Garabédian M., Guillozo H., Thil C. L., Balsan S. In vitro effects of vitamin D3 metabolites on rat calvaria cAMP content. Calcif Tissue Int. 1980;30(3):209–216. doi: 10.1007/BF02408630. [DOI] [PubMed] [Google Scholar]
  24. Mahgoub A., Sheppard H. Early effect of 25-hydroxycholecalciferol (25-OH-D3) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) on the ability of parathyroid hormone (PTH) to elevate cyclic AMP of intact bone cells. Biochem Biophys Res Commun. 1975 Feb 17;62(4):901–907. doi: 10.1016/0006-291x(75)90408-8. [DOI] [PubMed] [Google Scholar]
  25. Martin K. J., Stokes T. J., Jr, McConkey C. L., Jr Influence of forskolin on the parathyroid hormone dependent adenylate cyclase system of canine kidney: evidence for noncatalytic effects of forskolin. Endocrinology. 1984 Nov;115(5):1678–1682. doi: 10.1210/endo-115-5-1678. [DOI] [PubMed] [Google Scholar]
  26. Michelangeli V. P., Livesey S. A., Martin T. J. Effects of pertussis toxin on adenylate cyclase responses to prostaglandin E2 and calcitonin in human breast cancer cells. Biochem J. 1984 Dec 1;224(2):371–377. doi: 10.1042/bj2240371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Partridge N. C., Alcorn D., Michelangeli V. P., Ryan G., Martin T. J. Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res. 1983 Sep;43(9):4308–4314. [PubMed] [Google Scholar]
  28. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem. 1977 Oct 25;252(20):7224–7234. [PubMed] [Google Scholar]
  29. Raisz L. G., Trummel C. L., Holick M. F., DeLuca H. F. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science. 1972 Feb 18;175(4023):768–769. doi: 10.1126/science.175.4023.768. [DOI] [PubMed] [Google Scholar]
  30. Rich K. A., Codina J., Floyd G., Sekura R., Hildebrandt J. D., Iyengar R. Glucagon-induced heterologous desensitization of the MDCK cell adenylyl cyclase. Increases in the apparent levels of the inhibitory regulator (Ni). J Biol Chem. 1984 Jun 25;259(12):7893–7901. [PubMed] [Google Scholar]
  31. Ross E. M., Maguire M. E., Sturgill T. W., Biltonen R. L., Gilman A. G. Relationship between the beta-adrenergic receptor and adenylate cyclase. J Biol Chem. 1977 Aug 25;252(16):5761–5775. [PubMed] [Google Scholar]
  32. Rubin J. E., Catherwood B. D. 1,25 Dihydroxyvitamin D causes attenuation of cyclic AMP responses in monocyte-like cells. Biochem Biophys Res Commun. 1984 Aug 30;123(1):210–215. doi: 10.1016/0006-291x(84)90400-5. [DOI] [PubMed] [Google Scholar]
  33. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  34. Schneyer C. R., Piñeyro M. A., Gregerman R. I. Mechanism of action of forskolin on adenylate cyclase: effect on bovine sperm complemented with erythrocyte membranes. Life Sci. 1983 Jul 18;33(3):275–279. doi: 10.1016/0024-3205(83)90387-9. [DOI] [PubMed] [Google Scholar]
  35. Stern P. H., Tanaka Y., DeLuca H. F., Ikekawa N., Kobayashi Y. Bone resorptive activity of side-chain fluoro derivatives of 25-hydroxy- and 1 alpha,25-dihydroxyvitamin D3 in culture. Mol Pharmacol. 1981 Nov;20(3):460–462. [PubMed] [Google Scholar]
  36. Wong G. L., Luben R. A., Cohn D. V. 1,25-dihydroxycholecalciferol and parathormone: effects on isolated osteoclast-like and osteoblast-like cells. Science. 1977 Aug 12;197(4304):663–665. doi: 10.1126/science.195343. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES