Abstract
After cleavage of the thioester bonds of human alpha 2-macroglobulin (alpha 2M) by methylamine, the inhibitor undergoes an extensive conformational change and loses its ability to bind proteinases. In contrast, similar cleavage in the presence of dinitrophenyl thiocyanate, a reagent that cyanylates the liberated thiol groups, does not change the mobility of alpha 2M in gel electrophoresis, and the inhibitor also retains activity [Van Leuven, Marynen, Cassiman & Van den Berghe (1982) Biochem. J. 203, 405-411]. Analyses in this work show that also the spectroscopic properties of alpha 2M are essentially unperturbed under these conditions. These observations are consistent with the major change of the conformation of the protein having been arrested by the cyanylation reaction. However, several functional properties of the protein are altered, indicating that a limited conformational change does occur. The apparent stoichiometry of binding of trypsin is thus decreased to about 0.5 mol of enzyme/mol of alpha 2M. Nevertheless trypsin induces a similar conformational change in all molecules of the modified inhibitor as that induced in untreated alpha 2M. This behaviour indicates a similar mode of binding of the enzyme to the modified alpha 2M as to intact alpha 2M, but also a high extent of non-productive activation of binding sites in the modified inhibitor. A further difference to untreated alpha 2M is that most of the bound trypsin molecules react considerably faster with soya-bean trypsin inhibitor. The rate of inhibition of thrombin is also greatly decreased, and the modified inhibitor is more sensitive than untreated alpha 2M to proteolysis at sites outside the 'bait' region. The properties of the cyanylated human alpha 2M are thus similar to those of bovine alpha 2M in which the thioester bonds have been cleaved by methylamine in the absence of the cyanylating reagent [Björk, Lindblom & Lindahl (1985) Biochemistry 24, 2653-2660]. These results indicate that the thioester bonds of human and bovine alpha 2M are not required as such for the stability of the gross conformation of the protein or for the binding of proteinases. Nevertheless they participate directly in maintaining certain structural features, similar in the two inhibitors, that are necessary for full proteinase-binding ability. Disruption of these structures leads to a slower and less efficient trapping of the enzymes.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieth J. G., Tourbez-Perrin M., Pochon F. Inhibition of alpha 2-macroglobulin-bound trypsin by soybean trypsin inhibitor. J Biol Chem. 1981 Aug 10;256(15):7954–7957. [PubMed] [Google Scholar]
- Björk I., Fish W. W. Evidence for similar conformational changes in alpha 2-macroglobulin on reaction with primary amines or proteolytic enzymes. Biochem J. 1982 Nov 1;207(2):347–356. doi: 10.1042/bj2070347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björk I., Larsson L. J., Lindblom T., Raub E. Stoichiometry of reactions of alpha 2-macroglobulin with trypsin and chymotrypsin. Biochem J. 1984 Jan 1;217(1):303–308. doi: 10.1042/bj2170303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björk I., Lindblom T., Lindahl P. Changes of the proteinase binding properties and conformation of bovine alpha 2-macroglobulin on cleavage of the thio ester bonds by methylamine. Biochemistry. 1985 May 21;24(11):2653–2660. doi: 10.1021/bi00332a010. [DOI] [PubMed] [Google Scholar]
- Björk I. Non-productive activation of the proteinase binding sites of alpha 2-macroglobulin on reaction of the inhibitor with matrix-linked trypsin. Biochem Biophys Res Commun. 1984 Jan 30;118(2):691–695. doi: 10.1016/0006-291x(84)91358-5. [DOI] [PubMed] [Google Scholar]
- Branegård B., Osterberg R., Sjöberg B. Small-angle X-ray scattering study of the interaction between human alpha 2-macroglobulin and trypsin. Eur J Biochem. 1982 Mar 1;122(3):663–666. doi: 10.1111/j.1432-1033.1982.tb06489.x. [DOI] [PubMed] [Google Scholar]
- Dangott L. J., Cunningham L. W. Residual alpha 2-macroglobulin in fetal calf serum and properties of its complex with thrombin. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1243–1251. doi: 10.1016/s0006-291x(82)80131-9. [DOI] [PubMed] [Google Scholar]
- Dangott L. J., Puett D., Cunningham L. W. Conformational changes induced in human alpha 2-macroglobulin by protease and nucleophilic modification. Biochemistry. 1983 Jul 19;22(15):3647–3653. doi: 10.1021/bi00284a017. [DOI] [PubMed] [Google Scholar]
- Feldman S. R., Gonias S. L., Ney K. A., Pratt C. W., Pizzo S. V. Identification of "embryonin" as bovine alpha 2-macroglobulin. J Biol Chem. 1984 Apr 10;259(7):4458–4462. [PubMed] [Google Scholar]
- Fish W. W., Mann K. G., Tanford C. The estimation of polypeptide chain molecular weights by gel filtration in 6 M guanidine hydrochloride. J Biol Chem. 1969 Sep 25;244(18):4989–4994. [PubMed] [Google Scholar]
- Ganrot P. O. The combining ratio between trypsin and serum alpha-2-macroglobulin. Acta Chem Scand. 1966;20(8):2299–2300. doi: 10.3891/acta.chem.scand.20-2299. [DOI] [PubMed] [Google Scholar]
- Gonias S. L., Balber A. E., Hubbard W. J., Pizzo S. V. Ligand binding, conformational change and plasma elimination of human, mouse and rat alpha-macroglobulin proteinase inhibitors. Biochem J. 1983 Jan 1;209(1):99–105. doi: 10.1042/bj2090099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonias S. L., Pizzo S. V. Characterization of functional human alpha 2-macroglobulin half-molecules isolated by limited reduction with dithiothreitol. Biochemistry. 1983 Feb 1;22(3):536–546. doi: 10.1021/bi00272a003. [DOI] [PubMed] [Google Scholar]
- Gonias S. L., Pizzo S. V. Conformation and protease binding activity of binary and ternary human alpha 2-macroglobulin-protease complexes. J Biol Chem. 1983 Dec 10;258(23):14682–14685. [PubMed] [Google Scholar]
- Gonias S. L., Reynolds J. A., Pizzo S. V. Physical properties of human alpha 2-macroglobulin following reaction with methylamine and trypsin. Biochim Biophys Acta. 1982 Aug 10;705(3):306–314. doi: 10.1016/0167-4838(82)90252-7. [DOI] [PubMed] [Google Scholar]
- Hall P. K., Roberts R. C. Physical and chemical properties of human plasma alpha2-macroglobulin. Biochem J. 1978 Jul 1;173(1):27–38. doi: 10.1042/bj1730027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harpel P. C. Human alpha2-macroglobulin. Methods Enzymol. 1976;45:639–652. doi: 10.1016/s0076-6879(76)45055-3. [DOI] [PubMed] [Google Scholar]
- Harpel P. C. Studies on human plasma alpha 2-macroglobulin-enzyme interactions. Evidence for proteolytic modification of the subunit chain structure. J Exp Med. 1973 Sep 1;138(3):508–521. doi: 10.1084/jem.138.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J. B. Reactive site in human alpha 2-macroglobulin: circumstantial evidence for a thiolester. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2235–2239. doi: 10.1073/pnas.78.4.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell J. B., Beck T., Bates B., Hunter M. J. Interaction of alpha 2-macroglobulin with trypsin, chymotrypsin, plasmin, and papain. Arch Biochem Biophys. 1983 Feb 15;221(1):261–270. doi: 10.1016/0003-9861(83)90143-1. [DOI] [PubMed] [Google Scholar]
- Jones J. M., Creeth J. M., Kekwick R. A. Thio reduction of human 2 -macroglobulin. The subunit structure. Biochem J. 1972 Mar;127(1):187–197. doi: 10.1042/bj1270187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurecki T., Kress L. F., Laskowski M., Sr Purification of human plasma alpha 2 macroglobulin and alpha 1 proteinase inhibitor using zinc chelate chromatography. Anal Biochem. 1979 Nov 1;99(2):415–420. doi: 10.1016/s0003-2697(79)80026-3. [DOI] [PubMed] [Google Scholar]
- Larsson L. J., Björk I. Kinetics of appearance of sulfhydryl groups in alpha 2-macroglobulin on reaction of the inhibitor with amines. Biochemistry. 1984 Jun 5;23(12):2802–2807. doi: 10.1021/bi00307a041. [DOI] [PubMed] [Google Scholar]
- Lundblad R. L., Uhteg L. C., Vogel C. N., Kingdon H. S., Mann K. G. Preparation and partial characterization of two forms of bovine thrombin. Biochem Biophys Res Commun. 1975 Sep 16;66(2):482–489. doi: 10.1016/0006-291x(75)90536-7. [DOI] [PubMed] [Google Scholar]
- Ohlsson K., Skude G. Demonstration and semiquantitative determination of complexes between various proteases and human alpha2-macroglobulin. Clin Chim Acta. 1976 Jan 2;66(1):1–7. doi: 10.1016/0009-8981(76)90365-x. [DOI] [PubMed] [Google Scholar]
- Pochon F., Favaudon V., Tourbez-Perrin M., Bieth J. Localization of the two protease binding sites in human alpha 2-macroglobulin. J Biol Chem. 1981 Jan 25;256(2):547–550. [PubMed] [Google Scholar]
- Robinson N. C., Tye R. W., Neurath H., Walsh K. A. Isolation of trypsins by affinity chromatography. Biochemistry. 1971 Jul 6;10(14):2743–2747. doi: 10.1021/bi00790a014. [DOI] [PubMed] [Google Scholar]
- Salvesen G. S., Barrett A. J. Covalent binding of proteinases in their reaction with alpha 2-macroglobulin. Biochem J. 1980 Jun 1;187(3):695–701. doi: 10.1042/bj1870695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salvesen G. S., Sayers C. A., Barrett A. J. Further characterization of the covalent linking reaction of alpha 2-macroglobulin. Biochem J. 1981 May 1;195(2):453–461. doi: 10.1042/bj1950453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverberg S. A. Proteolysis of prothrombin by thrombin. Determination of kinetic parameters, and demonstration and characterization of an unusual inhibition by Ca2+ ions. J Biol Chem. 1979 Jan 10;254(1):88–94. [PubMed] [Google Scholar]
- Sottrup-Jensen L., Hansen H. F., Mortensen S. B., Petersen T. E., Magnusson S. Sequence location of the reactive thiol ester in human alpha 2-macroglobulin. FEBS Lett. 1981 Jan 12;123(1):145–148. doi: 10.1016/0014-5793(81)80039-7. [DOI] [PubMed] [Google Scholar]
- Sottrup-Jensen L., Lønblad P. B., Stepanik T. M., Petersen T. E., Magnusson S., Jörnvall H. Primary structure of the 'bait' region for proteinases in alpha 2-macroglobulin. Nature of the complex. FEBS Lett. 1981 May 18;127(2):167–173. doi: 10.1016/0014-5793(81)80197-4. [DOI] [PubMed] [Google Scholar]
- Sottrup-Jensen L., Petersen T. E., Magnusson S. A thiol-ester in alpha 2-macroglobulin cleaved during proteinase complex formation. FEBS Lett. 1980 Dec 1;121(2):275–279. doi: 10.1016/0014-5793(80)80361-9. [DOI] [PubMed] [Google Scholar]
- Sottrup-Jensen L., Petersen T. E., Magnusson S. Trypsin-induced activation of the thiol esters in alpha 2-macroglobulin generates a short-lived intermediate ('nascent' alpha 2-M) that can react rapidly to incorporate not only methylamine or putrescine but also proteins lacking proteinase activity. FEBS Lett. 1981 Jun 1;128(1):123–126. doi: 10.1016/0014-5793(81)81096-4. [DOI] [PubMed] [Google Scholar]
- Steinbuch M., Pejaudier L., Quentin M., Martin V. Molecular alteration of alpha-2-macroglobulin by aliphatic amines. Biochim Biophys Acta. 1968 Jan 22;154(1):228–231. doi: 10.1016/0005-2795(68)90277-8. [DOI] [PubMed] [Google Scholar]
- Straight D. L., McKee P. A. Effect of protease binding by alpha 2-macroglobulin on intrinsic fluorescence. Biochemistry. 1982 Sep 14;21(19):4550–4556. doi: 10.1021/bi00262a006. [DOI] [PubMed] [Google Scholar]
- Strickland D. K., Bhattacharya P., Olson S. T. Kinetics of the conformational alterations associated with nucleophilic modification of alpha 2-macroglobulin. Biochemistry. 1984 Jul 3;23(14):3115–3124. doi: 10.1021/bi00309a002. [DOI] [PubMed] [Google Scholar]
- Swenson R. P., Howard J. B. Structural characterization of human alpha2-macroglobulin subunits. J Biol Chem. 1979 Jun 10;254(11):4452–4456. [PubMed] [Google Scholar]
- Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
- Van Leuven F., Marynen P., Cassiman J. J., Van den Berghe H. Relation of internal thioesters to conformational change and receptor-recognition site in alpha 2-macroglobulin complexes. Biochem J. 1982 May 1;203(2):405–411. doi: 10.1042/bj2030405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang D., Wu K., Feinman R. D. The reaction of alpha 2-macroglobulin-bound trypsin with soybean trypsin inhibitor. J Biol Chem. 1981 Nov 10;256(21):10934–10940. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Wu K., Wang D., Feinman R. D. Inhibition of proteases by alpha 2-macroglobulin. The role of lysyl amino groups of trypsin in covalent complex formation. J Biol Chem. 1981 Oct 25;256(20):10409–10414. [PubMed] [Google Scholar]
- Yung B. Y., Trowbridge C. G. Resolution of alpha and beta anhydrotrypsin by affinity chromatography. Biochem Biophys Res Commun. 1975 Aug 4;65(3):927–930. doi: 10.1016/s0006-291x(75)80474-8. [DOI] [PubMed] [Google Scholar]

