Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 1;231(3):557–564. doi: 10.1042/bj2310557

Isolation of ATPase I, the proton pump of chromaffin-granule membranes.

J M Percy, J G Pryde, D K Apps
PMCID: PMC1152787  PMID: 3000354

Abstract

Chromaffin-granule membranes contain two ATPases, which can be separated by (NH4)2SO4 fractionation after solubilization with detergents, or by phase segregation in Triton X-114. ATPase I (Mr 400000) is inhibited by trialkyltin, quercetin and alkylating agents, and hydrolyses both ATP and ITP. It contains up to five types of subunit, including a low-Mr hydrophobic polypeptide that reacts with dicyclohexylcarbodi-imide; these subunits are unrelated to those of mitochondrial F1F0-ATPase, as judged by size and reaction with antibodies. ATPase II (Mr 140000) is inhibited by vanadate, and is specific for ATP; it has not been extensively purified. Proton translocation by resealed chromaffin-granule 'ghosts', measured by uptake of methylamine or by quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine, is supported by the hydrolysis of ATP or ITP, and inhibited by quercetin or alkylating agents, but not by vanadate. ATPase I must therefore be the proton translocator involved in the uptake of catecholamines and possibly of other components of the chromaffin-granule matrix, whereas ATPase II does not translocate protons.

Full text

PDF
555

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apps D. K., Boisclair M. D., Gavine F. S., Pettigrew G. W. Unusual redox behaviour of cytochrome b-561 from bovine chromaffin granule membranes. Biochim Biophys Acta. 1984 Jan 30;764(1):8–16. doi: 10.1016/0005-2728(84)90134-8. [DOI] [PubMed] [Google Scholar]
  2. Apps D. K., Pryde J. G., Phillips J. H. Both the transmembrane pH gradient and the membrane potential are important in the accumulation of amines by resealed chromaffin-granule 'ghosts'. FEBS Lett. 1980 Mar 10;111(2):386–390. doi: 10.1016/0014-5793(80)80833-7. [DOI] [PubMed] [Google Scholar]
  3. Apps D. K., Pryde J. G., Phillips J. H. Cytochrome b561 is identical with chromomembrin B, a major polypeptide of chromaffin granule membranes. Neuroscience. 1980;5(12):2279–2287. doi: 10.1016/0306-4522(80)90143-8. [DOI] [PubMed] [Google Scholar]
  4. Apps D. K., Pryde J. G., Sutton R. Characterization of detergent-solubilized adenosine triphosphatase of chromaffin granule membranes. Neuroscience. 1983 Jul;9(3):687–700. doi: 10.1016/0306-4522(83)90185-9. [DOI] [PubMed] [Google Scholar]
  5. Apps D. K., Pryde J. G., Sutton R., Phillips J. H. Inhibition of adenosine triphosphatase, 5-hydroxytryptamine transport and proton-translocation activities of resealed chromaffin-granule 'ghosts'. Biochem J. 1980 Aug 15;190(2):273–282. doi: 10.1042/bj1900273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Apps D. K., Pryde J. G., Sutton R. The H+-translocating adenosine triphosphatase of chromaffin granule membranes. Ann N Y Acad Sci. 1982;402:134–145. doi: 10.1111/j.1749-6632.1982.tb25737.x. [DOI] [PubMed] [Google Scholar]
  7. Apps D. K., Reid G. A. Adenosine triphosphatase and adenosine diphosphate/adenosine triphosphate isotope-exchange activities of the chromaffin-granule membrane. Biochem J. 1977 Oct 1;167(1):297–300. doi: 10.1042/bj1670297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Apps D. K., Schatz G. An adenosine triphosphatase isolated from chromaffin-granulate membranes is closely similar to F1-adenosine triphosphatase of mitochondria. Eur J Biochem. 1979 Oct 15;100(2):411–419. doi: 10.1111/j.1432-1033.1979.tb04184.x. [DOI] [PubMed] [Google Scholar]
  9. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  10. Bowman E. J., Bowman B. J. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa. J Bacteriol. 1982 Sep;151(3):1326–1337. doi: 10.1128/jb.151.3.1326-1337.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Buckland R. M., Radda G. K., Wakefield L. M. Reconstitution of the Mg2+-ATPase of the chromaffin granule membrane. FEBS Lett. 1979 Jul 15;103(2):323–327. doi: 10.1016/0014-5793(79)81354-x. [DOI] [PubMed] [Google Scholar]
  12. Churchill K. A., Sze H. Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots. Plant Physiol. 1983 Mar;71(3):610–617. doi: 10.1104/pp.71.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cidon S., Ben-David H., Nelson N. ATP-driven proton fluxes across membranes of secretory organelles. J Biol Chem. 1983 Oct 10;258(19):11684–11688. [PubMed] [Google Scholar]
  14. Cidon S., Nelson N. A novel ATPase in the chromaffin granule membrane. J Biol Chem. 1983 Mar 10;258(5):2892–2898. [PubMed] [Google Scholar]
  15. Dean G. E., Fishkes H., Nelson P. J., Rudnick G. The hydrogen ion-pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0- and phosphoenzyme-type ATPases. J Biol Chem. 1984 Aug 10;259(15):9569–9574. [PubMed] [Google Scholar]
  16. Flatmark T., Grønberg M., Husebye E., Jr, Berge S. V. Inhibition of N-ethylmaleimide of the MgATP-driven proton pump of the chromaffin granules. FEBS Lett. 1982 Nov 22;149(1):71–74. doi: 10.1016/0014-5793(82)81074-0. [DOI] [PubMed] [Google Scholar]
  17. Forgac M., Cantley L. Characterization of the ATP-dependent proton pump of clathrin-coated vesicles. J Biol Chem. 1984 Jul 10;259(13):8101–8105. [PubMed] [Google Scholar]
  18. Gabizon R., Yetinson T., Schuldiner S. Photoinactivation and identification of the biogenic amine transporter in chromaffin granules from bovine adrenal medulla. J Biol Chem. 1982 Dec 25;257(24):15145–15150. [PubMed] [Google Scholar]
  19. Gavine F. S., Pryde J. G., Deane D. L., Apps D. K. Glycoproteins of the chromaffin granule membrane: separation by two-dimensional electrophoresis and identification by lectin binding. J Neurochem. 1984 Nov;43(5):1243–1252. doi: 10.1111/j.1471-4159.1984.tb05379.x. [DOI] [PubMed] [Google Scholar]
  20. Giraudat J., Roisin M. P., Henry J. P. Solubilization and reconstitution of the adenosine 5'-triphosphate dependent proton translocase of bovine chromaffin granule membrane. Biochemistry. 1980 Sep 16;19(19):4499–4505. doi: 10.1021/bi00560a018. [DOI] [PubMed] [Google Scholar]
  21. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grüninger H. A., Apps D. K., Phillips J. H. Adenine nucleotide and phosphoenolpyruvate transport by bovine chromaffin granule "ghosts". Neuroscience. 1983 Aug;9(4):917–924. doi: 10.1016/0306-4522(83)90280-4. [DOI] [PubMed] [Google Scholar]
  23. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  24. KIRSHNER N. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem. 1962 Jul;237:2311–2317. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Moriyama Y., Takano T., Ohkuma S. Proton translocating ATPase in lysosomal membrane ghosts. Evidence that alkaline Mg2+-ATPase acts as a proton pump. J Biochem. 1984 Apr;95(4):995–1007. doi: 10.1093/oxfordjournals.jbchem.a134726. [DOI] [PubMed] [Google Scholar]
  27. Roisin M. P., Henry J. P. Purification and reconstitution of the 32Pi-ATP exchange activity of bovine chromaffin granule membrane. Biochim Biophys Acta. 1982 Aug 20;681(2):292–299. doi: 10.1016/0005-2728(82)90034-2. [DOI] [PubMed] [Google Scholar]
  28. Russell J. T. Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses. J Biol Chem. 1984 Aug 10;259(15):9496–9507. [PubMed] [Google Scholar]
  29. Scherman D., Henry J. P. Solubilization of the catecholamine carrier of chromaffin granule membranes in a form that binds substrates and inhibitors of uptake. Biochemistry. 1983 Jun 7;22(12):2805–2810. doi: 10.1021/bi00281a006. [DOI] [PubMed] [Google Scholar]
  30. Schmidt W., Winkler H., Plattner H. Adrenal chromaffin granules: evidence for an ultrastructural equivalent of the proton-pumping ATPase. Eur J Cell Biol. 1982 Apr;27(1):96–104. [PubMed] [Google Scholar]
  31. Stadler H., Tsukita S. Synaptic vesicles contain an ATP-dependent proton pump and show 'knob-like' protrusions on their surface. EMBO J. 1984 Dec 20;3(13):3333–3337. doi: 10.1002/j.1460-2075.1984.tb02300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stone D. K., Xie X. S., Racker E. Inhibition of clathrin-coated vesicle acidification by duramycin. J Biol Chem. 1984 Mar 10;259(5):2701–2703. [PubMed] [Google Scholar]
  33. Sutton R., Apps D. K. Isolation of a DCCD-binding protein from bovine chromaffin-granule membranes. FEBS Lett. 1981 Jul 20;130(1):103–106. doi: 10.1016/0014-5793(81)80675-8. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Uchida E., Ohsumi Y., Anraku Y. Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1985 Jan 25;260(2):1090–1095. [PubMed] [Google Scholar]
  36. Weber A., Winkler H. Specificity and mechanism of nucleotide uptake by adrenal chromaffin granules. Neuroscience. 1981;6(11):2269–2276. doi: 10.1016/0306-4522(81)90016-6. [DOI] [PubMed] [Google Scholar]
  37. Xie X. S., Stone D. K., Racker E. Activation and partial purification of the ATPase of clathrin-coated vesicles and reconstitution of the proton pump. J Biol Chem. 1984 Oct 10;259(19):11676–11678. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES