Abstract
The 13C-n.m.r. titration shifts of the alpha-methylene group of N-alkylated imidazoles are shown to be a sensitive probe of the ionization of the imidazolium ion. The 13C-n.m.r. titration shifts of both the intact and denatured/autolysed 2-13C- and 1-13C-enriched trypsin-7-amino-3-benzyloxycarbonylamino-1-chloroheptan-2-one (Z-Lys-CH2Cl) complexes are compared. The titration shift for the denatured/autolysed complex confirms that this ionization is due to deprotonation of the N-alkylated imidazolium ring of histidine-57. In the intact trypsin-inhibitor complex the titration shift due to the 1-13C-enriched carbon is anomalous. We conclude that this titration shift cannot arise solely from the ionization of the imidazolium ion of histidine-57 and that the pKa of the imidazolium ion of histidine-57 is raised in the trypsin-inhibitor complex. The relevance of these studies to the mechanism of action of the serine proteinases is discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asbóth B., Polgár L. Transition-state stabilization at the oxyanion binding sites of serine and thiol proteinases: hydrolyses of thiono and oxygen esters. Biochemistry. 1983 Jan 4;22(1):117–122. doi: 10.1021/bi00270a017. [DOI] [PubMed] [Google Scholar]
- Coggins J. R., Kray W., Shaw E. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone. Biochem J. 1974 Mar;137(3):579–585. doi: 10.1042/bj1370579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komiyama M., Bender M. L. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Proc Natl Acad Sci U S A. 1979 Feb;76(2):557–560. doi: 10.1073/pnas.76.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kossiakoff A. A., Spencer S. A. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry. 1981 Oct 27;20(22):6462–6474. doi: 10.1021/bi00525a027. [DOI] [PubMed] [Google Scholar]
- Malthouse J. P., Primrose W. U., Mackenzie N. E., Scott A. I. 13C NMR study of the ionizations within a trypsin-chloromethyl ketone inhibitor complex. Biochemistry. 1985 Jul 2;24(14):3478–3487. doi: 10.1021/bi00335a014. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Alden R. A., Freer S. T., Birktoft J. J., Kraut J. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin. J Biol Chem. 1976 Feb 25;251(4):1097–1103. [PubMed] [Google Scholar]
- Robillard G., Shulman R. G. High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. I. The hydrogen bonded protons of the "charge relay" system. J Mol Biol. 1974 Jul 5;86(3):519–540. doi: 10.1016/0022-2836(74)90178-8. [DOI] [PubMed] [Google Scholar]
- Schoot Uiterkamp A. J., Armitage I. M., Prestegard J. H., Slomski J., Coleman J. E. Carbon-13 nuclear magnetic resonance as a probe of side chain orientation and mobility in carboxymethylated human carbonic anhydrase B. Biochemistry. 1978 Sep 5;17(18):3730–3736. doi: 10.1021/bi00611a009. [DOI] [PubMed] [Google Scholar]
- Shaw E., Springhorn S. Identification of the histidine residue at the active center of trypsin labelled by TLCK. Biochem Biophys Res Commun. 1967 May 5;27(3):391–397. doi: 10.1016/s0006-291x(67)80112-8. [DOI] [PubMed] [Google Scholar]