Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 1;231(3):695–703. doi: 10.1042/bj2310695

Characterization of three kinetically distinct forms of glutamate decarboxylase from pig brain.

D C Spink, T G Porter, S J Wu, D L Martin
PMCID: PMC1152805  PMID: 4074332

Abstract

Pig brain contains three forms of glutamate decarboxylase with pI values of 5.3, 5.5 and 5.8, referred to as the alpha-, beta- and gamma-forms respectively. These forms were purified and kinetically characterized. The major synaptic form of glutamate decarboxylase (the beta-form) migrated as a single band on electrophoresis in sodium dodecyl sulphate/polyacrylamide gels with an apparent Mr of 60 000. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis followed by immunoblotting with an affinity-purified antibody to the enzyme indicated a subunit Mr of 60 000 for the alpha- and gamma-forms as well. An extensive kinetic analysis, aided by an integrated equation that describes the inactivation and re-activation cycle of the enzyme, revealed that the three forms of the enzyme differ markedly in kinetic properties. The Km values for L-glutamate were 0.17, 0.45 and 1.24 mM respectively for the alpha-, beta- and gamma-forms. The Ki for 4-aminobutyrate, the first-order rate constants for inactivation by L-glutamate and 4-aminobutyrate, the rate constant for re-activation of the apoenzyme by pyridoxal 5'-phosphate and the dissociation constant for pyridoxal 5'-phosphate also differed in a similar way among the three forms; the values were in the order alpha-form less than beta-form less than gamma-form.

Full text

PDF
694

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., BRADY R. O. The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):926–928. [PubMed] [Google Scholar]
  2. Bayón A., Possani L. D., Tapia M., Tapia R. Kinetics of brain glutamate decarboxylase. Interactions with glutamate, pyridoxal 5'-phosphate and glutamate-pyridoxal 5'-phosphate Schiff base. J Neurochem. 1977 Sep;29(3):519–525. doi: 10.1111/j.1471-4159.1977.tb10701.x. [DOI] [PubMed] [Google Scholar]
  3. Blindermann J. M., Maitre M., Ossola L., Mandel P. Purification and some properties of L-glutamate decarboxylase from human brain. Eur J Biochem. 1978 May;86(1):143–152. doi: 10.1111/j.1432-1033.1978.tb12293.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chapman A. G., Evans M. C. Cortical GABA turnover during bicuculline seizures in rats. J Neurochem. 1983 Sep;41(3):886–889. doi: 10.1111/j.1471-4159.1983.tb04823.x. [DOI] [PubMed] [Google Scholar]
  6. Christenson J. G., Dairman W., Udenfriend S. On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin-dopamine-norepinephrine). Proc Natl Acad Sci U S A. 1972 Feb;69(2):343–347. doi: 10.1073/pnas.69.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  8. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denner L. A., Wu J. Y. Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate. J Neurochem. 1985 Mar;44(3):957–965. doi: 10.1111/j.1471-4159.1985.tb12910.x. [DOI] [PubMed] [Google Scholar]
  10. Gale K., Casu M. Dynamic utilization of GABA in substantia nigra: regulation by dopamine and GABA in the striatum, and its clinical and behavioral implications. Mol Cell Biochem. 1981 Sep 25;39:369–405. doi: 10.1007/BF00232586. [DOI] [PubMed] [Google Scholar]
  11. Gold B. I., Roth R. H. Glutamate decarboxylase activity in striatal slices: characterization of the increase following depolarization. J Neurochem. 1979 Mar;32(3):883–888. doi: 10.1111/j.1471-4159.1979.tb04572.x. [DOI] [PubMed] [Google Scholar]
  12. Hartman B. K., Udenfriend S. A method for immediate visualization of proteins in acrylamide gels and its use for preparation of antibodies to enzymes. Anal Biochem. 1969 Sep;30(3):391–394. doi: 10.1016/0003-2697(69)90132-8. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Maitre M., Blindermann J. M., Ossola L., Mandel P. Comparison of the structures of L-glutamate decarboxylases from human and rat brains. Biochem Biophys Res Commun. 1978 Dec 14;85(3):885–890. doi: 10.1016/0006-291x(78)90626-5. [DOI] [PubMed] [Google Scholar]
  15. Matsuda T., Wu J. Y., Roberts E. Electrophoresis of glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain in sodium dodecyl sulphate polyacrylamide gels. J Neurochem. 1973 Jul;21(1):167–172. doi: 10.1111/j.1471-4159.1973.tb04236.x. [DOI] [PubMed] [Google Scholar]
  16. Meeley M. P., Martin D. L. Inactivation of brain glutamate decarboxylase and the effects of adenosine 5'-triphosphate and inorganic phosphate. Cell Mol Neurobiol. 1983 Mar;3(1):39–54. doi: 10.1007/BF00734997. [DOI] [PubMed] [Google Scholar]
  17. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  18. Miller L. P., Martin D. L., Mazumder A., Walters J. R. Studies on the regulation of GABA synthesis: substrate-promoted dissociation of pyridoxal-5'-phosphate from GAD. J Neurochem. 1978 Feb;30(2):361–369. doi: 10.1111/j.1471-4159.1978.tb06538.x. [DOI] [PubMed] [Google Scholar]
  19. Miller L. P., Walters J. R. Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes. J Neurochem. 1979 Aug;33(2):533–539. doi: 10.1111/j.1471-4159.1979.tb05185.x. [DOI] [PubMed] [Google Scholar]
  20. Miller L. P., Walters J. R., Martin D. L. Post-mortem changes implicate adenine nucleotides and pyridoxal-5' -phosphate in regulation of brain glutamate decarboxylase. Nature. 1977 Apr 28;266(5605):847–848. doi: 10.1038/266847a0. [DOI] [PubMed] [Google Scholar]
  21. Porter T. G., Martin D. L. Evidence for feedback regulation of glutamate decarboxylase by gamma-aminobutyric acid. J Neurochem. 1984 Nov;43(5):1464–1467. doi: 10.1111/j.1471-4159.1984.tb05409.x. [DOI] [PubMed] [Google Scholar]
  22. Porter T. G., Spink D. C., Martin S. B., Martin D. L. Transaminations catalysed by brain glutamate decarboxylase. Biochem J. 1985 Nov 1;231(3):705–712. doi: 10.1042/bj2310705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seligmann B., Miller L. P., Brockman D. E., Martin D. L. Studies on the regulation of GABA synthesis: the interaction of adenine nucleotides and glutamate with brain glutamate decarboxylase. J Neurochem. 1978 Feb;30(2):371–376. doi: 10.1111/j.1471-4159.1978.tb06539.x. [DOI] [PubMed] [Google Scholar]
  24. Spink D. C., Wu S. J., Martin D. L. Multiple forms of glutamate decarboxylase in porcine brain. J Neurochem. 1983 Apr;40(4):1113–1119. doi: 10.1111/j.1471-4159.1983.tb08101.x. [DOI] [PubMed] [Google Scholar]
  25. Susz J. P., Haber B., Roberts E. Purification and some properties of mouse brain L-glutamic decarboxylase. Biochemistry. 1966 Sep;5(9):2870–2877. doi: 10.1021/bi00873a014. [DOI] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Turský T. Inhibition of brain glutamate decarboxylase by adenosine triphosphate. Eur J Biochem. 1970 Feb;12(3):544–549. doi: 10.1111/j.1432-1033.1970.tb00885.x. [DOI] [PubMed] [Google Scholar]
  28. WILLIAMS D. E., REISFELD R. A. DISC ELECTROPHORESIS IN POLYACRYLAMIDE GELS: EXTENSION TO NEW CONDITIONS OF PH AND BUFFER. Ann N Y Acad Sci. 1964 Dec 28;121:373–381. doi: 10.1111/j.1749-6632.1964.tb14210.x. [DOI] [PubMed] [Google Scholar]
  29. Wu J. Y., Matsuda T., Roberts E. Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem. 1973 May 10;248(9):3029–3034. [PubMed] [Google Scholar]
  30. Wu J. Y., Wong E., Saito K., Roberts E., Schousboe A. Properties of L-glutamate decarboxylase from brains of adult and newborn mice. J Neurochem. 1976 Sep;27(3):653–659. doi: 10.1111/j.1471-4159.1976.tb10390.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES