Abstract
铁代谢是铁元素在生物体内吸收、转运、排泄、储存的过程,包括铁离子和铁结合蛋白在细胞内的生物学活动。临床研究和动物实验表明铁代谢升高与慢性牙周炎进展有关。铁代谢能够增强牙周致病菌的增殖和毒性,激活巨噬细胞、中性粒细胞和淋巴细胞介导的宿主免疫炎症反应。此外,铁代谢还参与调控牙龈成纤维细胞和成骨细胞的死亡敏感性,促进破骨细胞分化,在牙周组织的再生修复中发挥调节作用。本文尝试从铁代谢视角解释慢性牙周炎的发病机制,以期为防治提供新思路。
Keywords: 慢性牙周炎, 铁代谢, 致病菌, 免疫微环境, 牙周组织细胞, 综述
Abstract
Iron metabolism refers to the process of absorption, transport, excretion and storage of iron in organisms, including the biological activities of iron ions and iron-binding proteins in cells. Clinical research and animal experiments have shown that iron metabolism is associated with the progress of periodontitis. Iron metabolism not only enhances the proliferation and toxicity of periodontal pathogens, but also activate host immune-inflammatory response mediated by macrophages, neutrophils and lymphocytes. In addition, iron metabolism is also involved in regulating cellular death sensitivity of gingival fibroblasts and osteoblasts and promoting the differentiation of osteoclasts, which plays a regulatory role in the regeneration and repair of periodontal tissue. This article reviews the research progress on the pathogenesis of periodontitis from the perspective of iron metabolism, aiming to provide new ideas for the treatment of periodontitis.
Keywords: Chronic periodontitis, Iron metabolism, Pathogenic bacterium, Immune microenvironment, Periodontal tissue cells, Review
慢性牙周炎是一种以牙周支持组织破坏为主要特征的慢性感染性疾病[1-2]。研究表明,微量营养素在慢性牙周炎发生中存在一定影响[3-4]。铁元素是人体中含量最丰富的微量元素,其含量缺乏或过载均会引发疾病[5-6]。铁离子在组织和细胞内的吸收、转运、外排、储存等称为铁代谢[7-8]。铁代谢受TfR1[9]、FPN[10]、铁蛋白[11]等铁结合蛋白的严格调控。铁死亡是细胞铁代谢异常诱发的死亡形式[12],以铁依赖性、脂质过氧化物堆积为特征[13-14]。目前,相关研究聚焦于铁死亡及相关氧化应激信号在慢性牙周炎中的调控作用[15-17]。此外,铁代谢还可以通过铁离子、铁结合蛋白等形式参与调控牙周致病菌的增殖及毒性、宿主的免疫炎症反应和牙周组织细胞的功能反应。本文基于慢性牙周炎的病理和生理基础,从上述三个方向探讨铁代谢参与慢性牙周炎组织破坏的潜在机制,旨在更全面地认识慢性牙周炎的发病机制,为防治策略提供参考。
1. 慢性牙周炎的发生发展与铁代谢有关
1985年,有学者指出慢性牙周炎患者局部组织中存在铁代谢异常:牙龈炎患者和慢性牙周炎患者的龈沟液内铁离子浓度均明显升高,且后者龈沟液中铁离子浓度较前者更高[18]。乳铁蛋白是一种铁结合的糖蛋白,分布在唾液、乳汁等分泌物中[19]。Ramenzoni等[20]检测到慢性牙周炎患者唾液中的乳铁蛋白含量较健康对照者显著升高。铁蛋白是细胞内的结合蛋白,在慢性牙周炎患者的牙龈组织中高表达[21]。基于第三次美国健康和营养检查调查数据,Costa等[22]发现血清铁蛋白水平与慢性牙周炎严重程度、临床附着丧失比例呈正相关。上述临床研究表明,慢性牙周炎患者龈沟液、唾液、牙龈甚至外周血中铁代谢活性均升高。
动物研究结果也佐证了铁代谢异常参与慢性牙周炎发生发展的进程。原子吸收光谱检测结果显示,慢性牙周炎比格犬龈沟液内铁离子含量是正常参考值的4~9倍,是牙龈炎组龈沟液内铁离子含量的2~3倍[18]。有学者构建了铁过载的稳态铁调节基因Hfe敲除小鼠,发现釉牙骨质界到牙槽嵴顶距离显著增加,Ocn、Opg等成骨细胞标志物基因表达显著减少,IL-6等炎症因子的表达显著增加;16s RNA测序发现牙周菌群中牙龈卟啉单胞菌(P.gingivalis)和直肠弯曲杆菌(C.recut)的丰度显著增加[23]。
研究表明,铁代谢异常对慢性牙周炎的调控作用可能与组织细胞的铁死亡生物活动有关[24]。Xing等[25]发现慢性牙周炎患者牙龈组织中铁离子含量、活性氧以及ACSL4表达增加。此外,慢性牙周炎患者的血清[26]、唾液[27]和龈沟液[28]中脂质过氧化物终产物丙二醛含量也较对照组增加。经刮治和根面平整治疗,慢性牙周炎患者龈沟液中丙二醛含量降低[29]。采用结扎法构建慢性牙周炎小鼠模型,使用免疫组织化学染色发现牙龈组织中ACSL4高表达与IL-6高表达的细胞数同步增加,而在局部注射铁死亡抑制剂Fer-1后则同步减少[25]。人牙周膜干细胞中加入牙周致病菌的代谢产物丁酸盐后细胞死亡数显著增加,而Fer-1可特异性缓解这一现象[30]。
2. 铁代谢调控牙周致病菌的增殖及毒性
牙菌斑生物膜以龈缘为界,分为龈上牙菌斑生物膜和龈下牙菌斑生物膜两类[31]。龈下牙菌斑生物膜中牙龈卟啉单胞菌、齿垢密螺旋体、福赛坦纳菌等红色复合体和直肠弯曲杆菌、具核梭杆菌、中间普氏菌、变黑普氏菌等橙色复合体数的增加会导致慢性牙周炎的进展[32]。Boyer等[33]分析了66例铁过载患者血清中转铁蛋白饱和度和龈下菌群,发现高转铁蛋白饱和度(>45%)人群的细菌共生网络与正常转铁蛋白饱和度(≤45%)人群不同,具体表现为卟啉菌及密螺旋体的比例升高。提示机体铁代谢异常可能影响牙周菌群组成。
多项体外研究进一步证实了铁代谢与多种牙周致病菌的增殖能力密切相关。Grenier等[34]将硫酸亚铁、全转铁蛋白(铁饱和形式)和脱脂转铁蛋白(无铁形式)分别添加在铁缺乏培养基中,与直肠弯曲杆菌共同培养48 h,观察到硫酸亚铁和全转铁蛋白处理组的直肠弯曲杆菌显著增殖,而脱脂转铁蛋白处理组的直肠弯曲杆菌无明显增殖,提示不同形式的铁元素均能促进直肠弯曲杆菌生长繁殖。Shizukuishi等[35]也发现血红蛋白、氯化血红素、转铁蛋白等不同形式的铁均能促进牙龈卟啉单胞菌的增殖,且牙龈卟啉单胞菌的生长速率与含铁化合物浓度呈正相关。另有研究表明,在血红素和转铁蛋白不足的条件下,铁蛋白也可发挥促进牙龈卟啉单胞菌增殖的作用[36]。
为了探究铁代谢对牙龈卟啉单胞菌致病能力的影响,Grenier等[37]将三种致病菌株(W50、W83和ATCC 49417)和三种非致病菌株(ATCC 33277、LB13D-2和HW24D-1)分别与马血清共同培养18 h,发现致病菌株均能在马血清中显著增殖,而非致病菌株的生长几乎停滞;在马血清中添加过量血红素或氯化铁后,三种非致病菌株的增殖能力均可恢复。Goulet等[38]发现牙龈卟啉单胞菌可分泌牙龈蛋白酶,降解外源转铁蛋白作为自身铁和多肽的来源,且在降解过程产生游离铁及有毒的羟自由基,对组织细胞造成破坏,提示铁代谢增加不仅提高牙周致病菌的增殖能力,还增强其对宿主的破坏性。
3. 铁代谢影响宿主的免疫炎症反应
固有免疫是抵御牙周致病菌入侵的第一道防线[39]。巨噬细胞作为固有免疫系统的“哨兵”,可在不同刺激下极化为促炎的M1型或抗炎的M2型[40]。一项包含30例牙周标本的临床研究表明,重度慢性牙周炎患者局部组织中M1型巨噬细胞相关分子(iNOS和STAT1)和M2型巨噬细胞相关分子(Arg-1和STAT6)的基因和蛋白质水平均显著升高,且iNOS/Arg-1、STAT1/STAT6的比值也显著升高[41],提示巨噬细胞向M1型极化可能会加重慢性牙周炎的发生发展。脂多糖是革兰阴性菌细胞壁的组成部分,可诱导巨噬细胞向M1型极化[40]。采用脂多糖诱导人外周血单核细胞极化,在此基础上添加柠檬酸铁铵时Il-6和Tnf-α基因表达较无柠檬酸铁铵组显著增加;将小鼠巨噬细胞RAW264.7与脂多糖、柠檬酸铁铵共同培养,同样发现其M1型巨噬细胞相关标志物基因Il-6、Tnf-α和Mcp1表达较单纯脂多糖处理组显著增加;采用去铁胺降低巨噬细胞内的铁含量,Il-6、Tnf-α和Mcp1基因表达显著减少[42],提示细胞内铁代谢增加可能诱导巨噬细胞向M1表型极化。
中性粒细胞是龈袋和牙周袋中最丰富的白细胞。中性粒细胞活性降低会加重牙周致病菌对组织的破坏[43-44]。Hepc可以诱导FPN降解,导致细胞内铁离子堆积[45]。Malerba等[46]在A型链球菌感染的人皮肤病损组织中检测到Hepc表达显著增加;构建皮肤角质形成细胞内Hepc基因特异性敲除小鼠的A型链球菌感染模型发现,皮肤组织中CXC趋化因子配体1表达水平和中性粒细胞募集数均显著低于对照组。罹患口咽念珠菌病的小鼠口服降铁药物地拉罗司后,其唾液中铁离子含量降低至健康对照组的1/4,舌组织内中性粒细胞特征性髓过氧化物酶的活性降低至约1/2,真菌数也显著降低[47],提示组织中的铁代谢水平还可能影响中性粒细胞的抗菌能力。
研究表明,特异性免疫反应(包括T淋巴细胞免疫反应和B淋巴细胞免疫反应)失衡将加重慢性牙周炎的组织破坏程度[48]。Macedo等[49]在患低转铁蛋白血症的小鼠胸腺组织中发现,免疫细胞数较健康对照组显著减少,尤其是T淋巴细胞的早期分化受到较强抑制。有学者发现,与健康对照组比较,乳铁蛋白缺乏小鼠的骨髓、外周血和脾脏中B淋巴细胞数明显减少[50]。小鼠Tfrc基因突变会导致其细胞铁代谢功能缺陷,诱发联合免疫缺陷疾病(T淋巴细胞数和B淋巴细胞数正常但功能受损)[51]。另有研究表明,低转铁蛋白血症小鼠体内铁缺乏可抑制感染或肿瘤组织中的T淋巴细胞免疫[40]。上述研究结果提示,铁代谢是激活特异性免疫反应的重要诱因。
4. 铁代谢参与牙周组织细胞的生理病理过程
牙周组织包括牙龈、牙周膜和牙槽骨。牙龈是紧贴于牙颈部及邻近牙槽骨的黏膜组织[52]。牙龈成纤维细胞是牙龈组织的主要成分,负责结缔组织的合成和降解,参与免疫炎症反应;牙龈成纤维细胞活性异常会导致牙龈炎症和牙周组织破坏[53]。
牙周膜也称作牙周韧带,是连接牙根与牙槽骨的致密结缔组织,具有固定牙根、缓冲咬合力的作用[54]。Seo等[55]从人牙周膜组织中分离出一类STRO-1+、CD146+干细胞,并将其命名为牙周膜干细胞。牙周膜干细胞可在体外分化为成骨细胞、脂肪细胞和胶原形成细胞;将牙周膜干细胞移植到免疫缺陷动物体内,可产生牙骨质/牙周膜样结构[55-56]。
牙槽骨是骨骼系统中最活跃的组织,随着牙齿的发育、替换、移动而进行改建[57]。改建过程中的骨吸收和骨再生分别依赖于破骨细胞和成骨细胞的功能活动[58]。在生理状态下,破骨细胞在改建区域形成骨吸收陷窝,成骨细胞再迁移至缺损区并分泌骨基质[59]。破骨细胞和成骨细胞的细胞数及功能异常可造成牙槽骨稳态失衡,这是牙槽骨破坏的内在机制[11,60]。
4.1. 铁代谢调节牙龈成纤维细胞免疫炎症反应
Huang等[52]在健康者牙龈上皮基底层中观察到FTH呈特异性表达,并通过免疫荧光和聚合酶链反应检测到健康者的牙龈成纤维细胞和牙龈上皮细胞中铁蛋白均有明显表达。单细胞RNA测序结果显示,慢性牙周炎患者约80%的牙龈成纤维细胞中ACSL4等铁死亡相关信号分子的表达水平上调;铁死亡激活剂Erastin处理后,牙龈成纤维细胞中IL-6、IL-1β和TNF-α等炎症因子的表达显著升高,提示铁代谢异常诱发牙龈成纤维细胞程序性死亡可能参与调控牙周组织炎症反应[25]。有学者将抗细菌免疫反应的相关衍生物环二腺苷一磷酸、环二鸟苷一磷酸分别与人牙龈成纤维细胞共培养,通过蛋白质组学分析发现铁硫簇支架蛋白NFU1的表达均显著升高,并采用KEGG数据库进行信号通路富集分析后发现铁代谢稳态相关信号转导通路被激活[53]。研究发现,将牙龈卟啉单胞菌来源脂多糖与人牙龈成纤维细胞共同培养3 d后,牙龈成纤维细胞的增殖能力受到明显抑制,基质金属蛋白酶2、3表达显著上调而基质金属蛋白酶抑制剂1、2表达显著下调,炎症因子IL-6和IL-8表达显著升高[61]。综上,推测铁代谢可通过调节牙龈成纤维细胞的死亡及其对细菌的免疫炎症反应参与调控慢性牙周炎的组织破坏。
4.2. 铁代谢促进牙周膜干细胞向成骨细胞分化
Hou等[62]发现人牙周膜组织中FTL和FTH表达显著高于骨髓、心脏、皮肤。人牙周膜干细胞经铁螯合剂去铁胺干预后,其钙化结节数、ALP活性及成骨细胞分化相关基因表达均降低[63]。小鼠牙周膜细胞MPDL22向成骨细胞分化过程中,FTL和FTH的基因和蛋白质表达显著增加;采用小干扰RNA特异性下调MPDL22细胞的Fth后,钙化结节数显著减少,ALP活性大幅减弱,Runx2、COl1a1等成骨细胞分化相关基因表达均受到较强抑制[62]。上述研究表明,铁代谢能正向调控牙周膜干细胞向成骨细胞分化,有望在慢性牙周炎组织修复中发挥积极作用。
铁代谢可影响牙周膜干细胞的活性。Wang等[64]将超顺磁性氧化铁纳米粒修饰的人牙周膜干细胞和未修饰的人牙周膜干细胞分别培养1、3、7 d,通过细胞增殖及活/死细胞双染色发现牙周膜干细胞经氧化铁纳米粒修饰后增殖活性显著升高、绿染的活细胞数增多;分别诱导两组细胞向成骨细胞分化,发现牙周膜干细胞经氧化铁纳米粒修饰后ALP活性更强、钙化结节更多,ALP、COL1a1、BMP2等成骨分化相关标志物基因表达也显著增加。Shi等[65]将超顺磁性氧化铁纳米粒标记的牙周膜干细胞、牙周膜干细胞及等渗氯化钠溶液分别注射至大鼠牙周缺损区域,2、4周后通过micro-CT发现超顺磁性氧化铁纳米粒标记的牙周膜干细胞组骨体积分数最高,同时伴OCN表达水平升高;进一步将脂多糖注射至前述三组大鼠的局部缺损区域后发现,超顺磁性氧化铁纳米粒标记的牙周膜干细胞组中炎症因子IL-1β和IL-17表达明显抑制,而修复因子IL-10表达增加[65]。以上研究表明,超顺磁性氧化铁纳米粒可提高牙周膜干细胞的增殖、抗炎、促成骨分化,为慢性牙周炎组织修复材料的研发提供了新的方向。
4.3. 铁代谢影响成骨细胞稳态平衡
乳鼠原代颅骨细胞在体外诱导21 d能分化为成熟的成骨细胞[66]。Messer等[67]在原代颅骨细胞分化的不同时期加入去铁胺发现,在成骨分化早期或全周期加入时Ocn及Alp表达受到强烈抑制、形成矿化结节的面积显著减少,而在成骨分化晚期加入时成骨分化基因表达、矿化面积与对照组比较差异均无统计学意义,提示铁代谢在成骨细胞分化的早期阶段至关重要。有研究发现,在IL-17A促进乳鼠原代颅骨细胞成骨分化过程中,细胞内亚铁离子含量及铁代谢重要分子TfR1和FTH表达均增加;添加去铁胺后,Runx2、Alp等成骨细胞分化相关标志物基因表达受到较强抑制,钙化结节数锐减,同时Atg5、LC3等自噬信号分子的表达明显减少[11]。Hou等[63]采用成骨矿化培养基诱导干细胞向成骨细胞分化,通过茜素红染色发现矿化培养基添加外源铁剂柠檬酸铁铵或去铁胺后均显著抑制成骨细胞诱导形成钙化结节。
Xia等[68]将不同浓度的外源铁剂与小鼠骨髓间充质干细胞共同培养后,通过细胞增殖实验检测到柠檬酸铁铵呈浓度依赖性方式抑制骨髓间充质干细胞增殖;成骨细胞诱导实验发现ALP活性和钙化结节数明显降低;分子生物学实验显示RUNX2、COl1a1等成骨细胞标志物表达受到较强抑制,REPIN1表达增加;RNA测序结果进一步揭示,铁过载情况下REPIN1能正向调控Bcl2和Bax等成骨细胞凋亡相关基因。Luo等[69]将高浓度铁剂与小鼠骨髓间充质干细胞共培养发现,ALP活性降低,钙化结节数减少,Lef1、Bmp4、Smad6和Cyclin D1等Wnt信号通路靶基因表达随之下调,并通过透射电子显微镜观察到铁死亡特征性线粒体,表明细胞内的铁代谢异常可能与Wnt信号通路发生串扰,影响细胞的铁死亡敏感性,从而调控细胞的成骨分化潜能。
上述研究结果提示铁代谢与成骨细胞分化稳态密切相关。生理状态下,铁代谢可能通过调控细胞自噬活动促进成骨细胞分化;而铁代谢失衡可能通过激活REPIN1、Wnt信号通路诱发细胞程序性死亡(凋亡和铁死亡),从而抑制成骨细胞分化。
4.4. 铁代谢促进破骨细胞分化及骨吸收活性
牙槽骨中破骨细胞数增加及骨吸收能力显著增强是导致慢性牙周炎牙槽骨破坏的直接原因[60,70]。Das等[71]通过Tfrc基因敲除构建了铁代谢障碍小鼠模型,通过micro-CT观察到长骨中的骨体积分数、骨小梁数和厚度显著增加。Wang等[72]构建了Fpn基因敲除的铁过载小鼠,发现小鼠股骨中破骨细胞数增加、骨组织减少;提取小鼠骨髓细胞进行破骨细胞诱导发现,TRAP阳性的成熟破骨细胞数与骨吸收陷窝数同步增多,破骨细胞分化相关标志物(如NFATc1、CtsK、PGC-1β)表达显著增强。Lee等[73]向破骨前体细胞RAW264.7加入去铁胺,发现去铁胺可抑制RAW264.7的破骨分化,这也佐证了铁代谢在破骨分化中的积极作用。Das等[71]获取Tfrc基因敲除小鼠的BMM并诱导破骨分化,发现线粒体复合物Ⅰ、Ⅱ表达受到抑制,线粒体膜电位降低;Wang等[74]获取铁过载小鼠的BMM并进行破骨诱导,发现细胞内活性氧水平显著升高,且P65、P50等NF-κB信号通路相关分子表达显著增加。Zhang等[75]在小鼠BMM中加入去铁胺发现,线粒体复合物Ⅰ、Ⅱ、Ⅲ的活性受到强烈抑制,MAPK信号通路相关蛋白(磷酸化JNK、磷酸化ERK1/2、磷酸化P38)表达显著减少,而添加转铁蛋白则结果相反,提示铁代谢调控破骨细胞分化可能与线粒体复合物活动以及MAPK、NF-κB信号通路有关。
5. 结语
铁代谢涉及铁离子和铁结合蛋白参与的诸多环节,铁代谢异常可能诱发组织细胞的铁死亡生物活动。临床研究和动物实验均可检测到慢性牙周炎组的铁离子和铁蛋白水平以及铁死亡标志物丙二醛含量显著升高,提示慢性牙周炎的发生发展与铁代谢有关。牙周局部组织中铁代谢水平升高,将从以下途径参与慢性牙周炎进程:①促进牙龈卟啉单胞菌、直肠弯曲杆菌等致病菌增殖并增强牙周致病菌的毒性,引起牙周菌群失衡;②诱发巨噬细胞、中性粒细胞和淋巴细胞产生过度免疫反应,增加牙周组织炎症;③增加牙龈成纤维细胞和成骨细胞的铁死亡敏感性,促进破骨细胞分化并发挥骨吸收功能,造成牙周组织破坏。探寻并验证铁代谢中的生物标志物,将其应用于慢性牙周炎的风险预测和疗效评估十分有意义。开发铁代谢相关靶向药物可能成为慢性牙周炎治疗的新策略。
现有的Bio-Oss等骨移植材料往往缺乏生物诱导性,在牙槽骨修复中存在一定局限性[76]。牙周膜干细胞是修复牙周组织的“种子细胞”,其向成骨细胞分化过程中伴随铁代谢水平升高[62]。基于铁元素的超顺磁纳米粒能提高牙周膜干细胞的增殖、抗炎和成骨分化潜能[64]。开发铁代谢相关的生物材料有望成为牙周组织修复的新方向。
Acknowledgments
研究得到国家自然科学基金(82170954)支持
Acknowledgments
This work was supported by the National Natural Science Foundation of China (82170954)
[缩略语]
转铁蛋白受体(transferrin receptor,TfR);泵铁蛋白(ferroportin,FPN);骨钙蛋白(osteocalcin,OCN);护骨因子(osteoprotegerin,OPG);酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family,ACSL);铁代谢抑制剂(ferrostatin,Fer);诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS);信号转导及转录激活蛋白(signal transducer and activator of transcription,STAT);精氨酸酶(arginase,Arg);肿瘤坏死因子(tumor necrosis factor,TNF);单核细胞趋化蛋白(monocyte chemotactic protein,MCP);铁调素(hepcidin,Hepc);铁蛋白重链(ferritin heavy chain,FTH);京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG);铁蛋白轻链(ferritin light chain,FTL);碱性磷酸酶(alkaline phosphatase,ALP);Runt相关转录因子(Runt-related transcription factor,RUNX);Ⅰ型胶原蛋白alpha 1链(collagen type Ⅰ alpha 1 chain,COl1a1);骨形态发生蛋白(bone morphogenetic protein,BMP);微型计算机断层扫描(micro-computed tomography,micro-CT);复制引发剂(replication initiator,REPIN);抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP);骨髓来源巨噬细胞(bone marrow-derived macrophage,BMM);核因子κB(nuclear factor κB,NF-κB);丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
医学伦理
研究不涉及人体或动物实验
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors
参考文献(References)
- 1.HERRERA D, SANZ M, KEBSCHULL M, et al. Treat-ment of stage Ⅳ periodontitis: the EFP S3 level clinical practice guideline[J]. J Clin Periodontol, 2022, 49(Suppl 24): 4-71. 10.1111/jcpe.13639 [DOI] [PubMed] [Google Scholar]
- 2.JANAKIRAM C, DYE B A. A public health approach for prevention of periodontal disease[J]. Periodontol 2000, 2020, 84(1): 202-214. 10.1111/prd.12337 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.DOMMISCH H, KUZMANOVA D, JÖNSSON D, et al. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy[J]. Periodontol 2000, 2018, 78(1): 129-153. 10.1111/prd.12233 [DOI] [PubMed] [Google Scholar]
- 4.WOELBER J P, REICHENBÄCHER K, GROß T, et al. Dietary and nutraceutical interventions as an adjunct to non-surgical periodontal therapy—a systematic review[J]. Nutrients, 2023, 15(6): 1538. 10.3390/nu15061538 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.PASRICHA S R, TYE-DIN J, MUCKENTHALER M U, et al. Iron deficiency[J]. Lancet, 2021, 397(10270): 233-248. 10.1016/s0140-6736(20)32594-0 [DOI] [PubMed] [Google Scholar]
- 6.GATTERMANN N, MUCKENTHALER M U, KULOZIK A E, et al. The evaluation of iron deficiency and iron overload[J]. Dtsch Arztebl Int, 2021, 118(49): 847-856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.ABBATE V, HIDER R. Iron in biology[J]. Metallomics, 2017, 9(11): 1467-1469. 10.1039/c7mt90039b [DOI] [PubMed] [Google Scholar]
- 8.GALY B, CONRAD M, MUCKENTHALER M. Mecha-nisms controlling cellular and systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133-155. 10.1038/s41580-023-00648-1 [DOI] [PubMed] [Google Scholar]
- 9.KAWABATA H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54. 10.1016/j.freeradbiomed.2018.06.037 [DOI] [PubMed] [Google Scholar]
- 10.RISHI G, SUBRAMANIAM V N. Biology of the iron efflux transporter, ferroportin[J]. Adv Protein Chem Struc Biol, 2021, 123: 1-16. 10.1016/bs.apcsb.2020.10.005 [DOI] [PubMed] [Google Scholar]
- 11.YUAN W, YANG Y, WEI Y, et al. Ferritin was involved in interleukin-17A enhanced osteogenesis through autophagy activation[J]. Int Immunopharmacol, 2023, 124(Pt A): 110916. 10.1016/j.intimp.2023.110916 [DOI] [PubMed] [Google Scholar]
- 12.ZHENG J, CONRAD M. The metabolic underpin-nings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937. 10.1016/j.cmet.2020.10.011 [DOI] [PubMed] [Google Scholar]
- 13.DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. 10.1016/j.cell.2012.03.042 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. 10.1016/j.cell.2022.06.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.罗晓洁, 王德续, 陈晓涛. 基于生物信息学分析铁死亡调控基因与CP的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. [Google Scholar]; LUO Xiaojie, WANG Dexu, CHEN Xiaotao. Relation-ship between periodontitis and ferroptosis based on bioinformatics analysis[J]. International Journal of Stomatology, 2023, 50(6): 661-668. (in Chinese) [Google Scholar]
- 16.周蔚林, 黄维澧, 黄怡. 牙周成纤维细胞铁死亡和CP相关作用的研究进展[J]. 临床口腔医学杂志, 2024, 40(4): 245-247. [Google Scholar]; ZHOU Weilin, HUANG Weili, HUANG Yi. Research progress on the role of ferroptosis and periodontitis in periodontal fibroblasts[J]. Journal of Clinical Stoma-tology, 2024, 40(4): 245-247. (in Chinese) [Google Scholar]
- 17.查嗣钦, 陈晓涛. 牙周炎骨吸收与破骨细胞铁死亡的研究进展[J]. 临床口腔医学杂志, 2023, 39(5): 315-318. [Google Scholar]; ZHA Siqin, CHEN Xiaotao. Research progress on bone resorption and osteoclast ferroptosis in periodontitis[J]. Journal of Clinical Stomatology, 2023, 39(5): 315-318. (in Chinese) [Google Scholar]
- 18.MUKHERJEE S. The role of crevicular fluid iron in periodontal disease[J]. J Periodontol, 1985, 56(11 Suppl): 22-27. 10.1902/jop.1985.56.11s.22 [DOI] [PubMed] [Google Scholar]
- 19.WANG B, TIMILSENA Y P, BLANCH E, et al. Lac-toferrin: structure, function, denaturation and digestion[J]. Crit Rev Food Sci Nutr, 2019, 59(4): 580-596. 10.1080/10408398.2017.1381583 [DOI] [PubMed] [Google Scholar]
- 20.RAMENZONI L L, HOFER D, SOLDERER A, et al. Origin of MMP-8 and lactoferrin levels from gingival crevicular fluid, salivary glands and whole saliva[J]. Bmc Oral Health, 2021, 21(1): 385. 10.1186/s12903-021-01743-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.GUO W, ZHAO Y, LI H, et al. NCOA4-mediated ferritinophagy promoted inflammatory responses in per-iodontitis[J]. J Periodontal Res, 2021, 56(3): 523-534. 10.1111/jre.12852 [DOI] [PubMed] [Google Scholar]
- 22.COSTA S A, RIBEIRO C, MOREIRA A, et al. High serum iron markers are associated with periodontitis in post-menopausal women: a population-based study (NHANES Ⅲ)[J]. J Clin Periodontol, 2022, 49(3): 221-229. 10.1111/jcpe.13580 [DOI] [PubMed] [Google Scholar]
- 23.HAN P, LIU T, VAQUETTE C, et al. Iron accumulation is associated with periodontal destruction in a mouse model of HFE-related haemochromatosis[J]. J Perio-dontal Res, 2022, 57(2): 294-304. 10.1111/jre.12959 [DOI] [PubMed] [Google Scholar]
- 24.CHEN K, MA S, DENG J, et al. Ferroptosis: a new development trend in periodontitis[J]. Cells, 2022, 11(21): 3349. 10.3390/cells11213349 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.XING L, DONG W, CHEN Y, et al. Fibroblast fer-roptosis is involved in periodontitis-induced tissue damage and bone loss[J]. Int Immunopharmacol, 2023, 114: 109607. 10.1016/j.intimp.2022.109607 [DOI] [PubMed] [Google Scholar]
- 26.AHMADI-MOTAMAYEL F, GOODARZI M T, JAMSHIDI Z, et al. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: a case-control study[J]. Front Physiol, 2017, 8: 189. 10.3389/fphys.2017.00189 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.ÖNDER C, KURGAN Ş, ALTINGÖZ S M, et al. Impact of non-surgical periodontal therapy on saliva and serum levels of markers of oxidative stress[J]. Clin Oral Investig, 2017, 21(6): 1961-1969. 10.1007/s00784-016-1984-z [DOI] [PubMed] [Google Scholar]
- 28.CHEN M, CAI W, ZHAO S, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608-622. 10.1111/jcpe.13112 [DOI] [PubMed] [Google Scholar]
- 29.WEI D, ZHANG X L, WANG Y Z, et al. Lipid per-oxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy[J]. Aust Dent J, 2010, 55(1): 70-78. 10.1111/j.1834-7819.2009.01123.x [DOI] [PubMed] [Google Scholar]
- 30.ZHAO Y, LI J, GUO W, et al. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy[J]. Cell Death Discov, 2020, 6(1): 119. 10.1038/s41420-020-00356-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.JAKUBOVICS N S, GOODMAN S D, MASHBURN-WARREN L, et al. The dental plaque biofilm matrix[J]. Periodontol 2000, 2021, 86(1): 32-56. 10.1111/prd.12361 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.CURTIS M A, DIAZ P I, VAN DYKE T E. The role of the microbiota in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 14-25. 10.1111/prd.12296 [DOI] [PubMed] [Google Scholar]
- 33.BOYER E, LE GALL-DAVID S, MARTIN B, et al. Increased transferrin saturation is associated with sub-gingival microbiota dysbiosis and severe periodontitis in genetic haemochromatosis[J]. Sci Rep, 2018, 8(1): 15532. 10.1038/s41598-018-33813-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.GRENIER D, TANABE S. Transferrin as a source of iron for Campylobacter rectus [J]. J Oral Microbiol, 2011: 3. 10.3402/jom.v3i0.5660 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.SHIZUKUISHI S, TAZAKI K, INOSHITA E, et al. Effect of concentration of compounds containing iron on the growth of Porphyromonas gingivalis [J]. FEMS Microbiol Lett, 1995, 131(3): 313-317. 10.1111/j.1574-6968.1995.tb07793.x [DOI] [PubMed] [Google Scholar]
- 36.RATNAYAKE D B, WAI S N, SHI Y, et al. Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies[J]. Micro-biology (Reading), 2000, 146(Pt 5): 1119-1127. 10.1099/00221287-146-5-1119 [DOI] [PubMed] [Google Scholar]
- 37.GRENIER D, GOULET V, MAYRAND D. The capacity of Porphyromonas gingivalis to multiply under iron-limiting conditions correlates with its pathogenicity in an animal model[J]. J Dent Res, 2001, 80(7): 1678-1682. 10.1177/00220345010800071501 [DOI] [PubMed] [Google Scholar]
- 38.GOULET V, BRITIGAN B, NAKAYAMA K, et al. Cleavage of human transferrin by Porphyromonas gingivalis gingipains promotes growth and formation of hydroxyl radicals[J]. Infect Immun, 2004, 72(8): 4351-4356. 10.1128/iai.72.8.4351-4356.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.ZHANG Q, CAO X. Epigenetic remodeling in innate immunity and inflammation[J]. Annu Rev Immunol, 2021, 39: 279-311. 10.1146/annurev-immunol-093019-123619 [DOI] [PubMed] [Google Scholar]
- 40.NI S, YUAN Y, KUANG Y, et al. Iron metabolism and immune regulation[J]. Front Immunol, 2022, 13: 816282. 10.3389/fimmu.2022.816282 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.ZHANG W, GUAN N, ZHANG X, et al. Study on the imbalance of M1/M2 macrophage polarization in severe chronic periodontitis[J]. Technol Health Care, 2023, 31(1): 117-124. 10.3233/thc-220092 [DOI] [PubMed] [Google Scholar]
- 42.HOEFT K, BLOCH D B, GRAW J A, et al. Iron loading exaggerates the inflammatory response to the Toll-like receptor 4 ligand lipopolysaccharide by altering mitochondrial homeostasis[J]. Anesthesiology, 2017, 127(1): 121-135. 10.1097/aln.0000000000001653 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.JIANG Q, ZHAO Y, SHUI Y, et al. Interactions between neutrophils and periodontal pathogens in late-onset periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 627328. 10.3389/fcimb.2021.627328 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.NICU E A, LOOS B G. Polymorphonuclear neutrophils in periodontitis and their possible modulation as a the-rapeutic approach[J]. Periodontol 2000, 2016, 71(1): 140-163. 10.1111/prd.12113 [DOI] [PubMed] [Google Scholar]
- 45.WILBON A S, SHEN J, RUCHALA P, et al. Structural basis of ferroportin inhibition by minihepcidin PR73[J/OL]. PLoS Biol, 2023, 21(1): e3001936. 10.1371/journal.pbio.3001936 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.MALERBA M, LOUIS S, CUVELLIER S, et al. Epi-dermal hepcidin is required for neutrophil response to bacterial infection[J]. J Clin Invest, 2020, 130(1): 329-334. 10.1172/jci126645 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.PURI S, KUMAR R, ROJAS I G, et al. Iron chelator deferasirox reduces candida albicans invasion of oral epithelial cells and infection levels in murine oropha-ryngeal candidiasis[J/OL]. Antimicrob Agents Chemother, 2019, 63(4): e02152-18. 10.1128/aac.02152-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.PAN W, WANG Q, CHEN Q. The cytokine network involved in the host immune response to periodontitis[J]. Int J Oral Sci, 2019, 11(3): 30. 10.1038/s41368-019-0064-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.MACEDO M F, DE SOUSA M, NED R M, et al. Transferrin is required for early T-cell differentiation[J]. Immunology, 2004, 112(4): 543-549. 10.1111/j.1365-2567.2004.01915.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.WEI L, LIU C, WANG J, et al. Lactoferrin is required for early B cell development in C57BL/6 mice[J]. J Hematol Oncol, 2021, 14(1): 58. 10.1186/s13045-021-01074-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.JABARA H H, BOYDEN S E, CHOU J, et al. A mis-sense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency[J]. Nat Genet, 2016, 48(1): 74-78. 10.1038/ng.3465 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.HUANG W, LI W, LIU J, et al. Ferritin expression in the periodontal tissues of primates[J]. Eur J Histochem, 2019, 63(3): 3046. 10.4081/ejh.2019.3046 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.ONYEDIBE K I, ELMANFI S, ARYAL U K, et al. Global proteomics of fibroblast cells treated with bacte-rial cyclic dinucleotides, c-di-GMP and c-di-AMP[J]. J Oral Microbiol, 2022, 14(1): 2003617. 10.1080/20002297.2021.2003617 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.DE JONG T, BAKKER A D, EVERTS V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017, 52(6): 965-974. 10.1111/jre.12477 [DOI] [PubMed] [Google Scholar]
- 55.SEO B M, MIURA M, GRONTHOS S, et al. Investi-gation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155. 10.1016/s0140-6736(04)16627-0 [DOI] [PubMed] [Google Scholar]
- 56.WANG Y, ZHOU L, LI C, et al. Bone marrow-derived cells homing for self-repair of periodontal tissues: a histological characterization and expression analysis[J]. Int J Clin Exp Pathol, 2015, 8(10): 12379-12389. [PMC free article] [PubMed] [Google Scholar]
- 57.MONJE A, CHAN H L, GALINDO-MORENO P, et al. Alveolar bone architecture: a systematic review and meta-analysis[J]. J Periodontol, 2015, 86(11): 1231-1248. 10.1902/jop.2015.150263 [DOI] [PubMed] [Google Scholar]
- 58.CHEN X, WANG Z, DUAN N, et al. Osteoblast-osteo-clast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. 10.1080/03008207.2017.1290085 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.RUNYAN C M, GABRICK K S. Biology of bone for-mation, fracture healing, and distraction osteogenesis[J]. J Craniofac Surg, 2017, 28(5): 1380-1389. 10.1097/scs.0000000000003625 [DOI] [PubMed] [Google Scholar]
- 60.CHEN L, YANG Y, BAO J, et al. Autophagy negative-regulating Wnt signaling enhanced inflammatory osteo-clastogenesis from Pre-OCs in vitro [J]. Biomed Phar-macother, 2020, 126: 110093. 10.1016/j.biopha.2020.110093 [DOI] [PubMed] [Google Scholar]
- 61.BOZKURT S B, HAKKI S S, HAKKI E E, et al. Porphyromonas gingivalis lipopolysaccharide induces a pro-inflammatory human gingival fibroblast phenotype[J]. Inflammation, 2017, 40(1): 144-153. 10.1007/s10753-016-0463-7 [DOI] [PubMed] [Google Scholar]
- 62.HOU J, YAMADA S, KAJIKAWA T, et al. Role of ferritin in the cytodifferentiation of periodontal ligament cells[J]. Biochem Biophys Res Commun, 2012, 426(4): 643-648. 10.1016/j.bbrc.2012.09.008 [DOI] [PubMed] [Google Scholar]
- 63.HOU J, YAMADA S, KAJIKAWA T, et al. Iron plays a key role in the cytodifferentiation of human perio-dontal ligament cells[J]. J Periodontal Res, 2014, 49(2): 260-267. 10.1111/jre.12103 [DOI] [PubMed] [Google Scholar]
- 64.WANG X, SUN L, QIN X, et al. Enhanced anti-inflammatory capacity of the conditioned medium derived from periodontal ligament stem cells modified with an iron-based nanodrug[J/OL]. Adv Biol (Weinh), 2023, 7(10): e2300044. 10.1002/adbi.202300044 [DOI] [PubMed] [Google Scholar]
- 65.SHI Z, JIA L, ZHANG Q, et al. An altered oral microbiota induced by injections of superparamagnetic iron oxide nanoparticle-labeled periodontal ligament stem cells helps periodontal bone regeneration in rats[J/OL]. Bioeng Transl Med, 2023, 8(3): e10466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.CHEN L, BAO J, YANG Y, et al. Autophagy was involved in tumor necrosis factor-α-inhibited osteogenic differentiation of murine calvarial osteoblasts through Wnt/β-catenin pathway[J]. Tissue Cell, 2020, 67: 101401. 10.1016/j.tice.2020.101401 [DOI] [PubMed] [Google Scholar]
- 67.MESSER J G, COONEY P T, KIPP D E. Iron chelator deferoxamine alters iron-regulatory genes and proteins and suppresses osteoblast phenotype in fetal rat calvaria cells[J]. Bone, 2010, 46(5): 1408-1415. 10.1016/j.bone.2010.01.376 [DOI] [PubMed] [Google Scholar]
- 68.XIA Y, GE G, XIAO H, et al. REPIN1 regulates iron metabolism and osteoblast apoptosis in osteoporosis[J]. Cell Death Dis, 2023, 14(9): 631. 10.1038/s41419-023-06160-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.LUO C, XU W, TANG X, et al. Canonical Wnt signaling works downstream of iron overload to prevent ferroptosis from damaging osteoblast differentiation[J]. Free Radic Biol Med, 2022, 188: 337-350. 10.1016/j.freeradbiomed.2022.06.236 [DOI] [PubMed] [Google Scholar]
- 70.BAO J, WANG Z, YANG Y, et al. Interleukin-17 alleviates erastin-induced alveolar bone loss by sup-pressing ferroptosis via interaction between NRF2 and p-STAT3[J]. J Clin Periodontol, 2024, 51(2): 233-250. 10.1111/jcpe.13898 [DOI] [PubMed] [Google Scholar]
- 71.DAS B K, WANG L, FUJIWARA T, et al. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton[J/OL]. Elife, 2022, 11: e73539. 10.7554/elife.73539.sa0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.WANG L, FANG B, FUJIWARA T, et al. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo [J]. J Biol Chem, 2018, 293(24): 9248-9264. 10.1074/jbc.ra117.000834 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.LEE K E, MO S, LEE H S, et al. Deferoxamine reduces inflammation and osteoclastogenesis in avulsed teeth[J]. Int J Mol Sci, 2021, 22(15): 8225. 10.3390/ijms22158225 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.WANG X, CHEN B, SUN J, et al. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model[J]. Metab-olism, 2018, 83: 167-176. 10.1016/j.metabol.2018.01.005 [DOI] [PubMed] [Google Scholar]
- 75.ZHANG J, HU W, DING C, et al. Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling[J]. Toxicol Lett, 2019, 313: 50-59. 10.1016/j.toxlet.2019.06.007 [DOI] [PubMed] [Google Scholar]
- 76.ALUDDEN HC, MORDENFELD A, HALLMAN M, et al. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review[J]. Int J Oral Maxillofac Surg, 2017, 46(8): 1030-1038. 10.1016/j.ijom.2017.03.008 [DOI] [PubMed] [Google Scholar]
